Crossword Compiler: A Data Structure, Algorithms, and Entropy

Matthew Fahrbach

Outline

Crossword Compiler

- Crossword Puzzles
- Filler Word Tree
- Word Ranking Algorithm
- Crossword Fill Algorithm

Information Theory

- Claude Elwood Shannon
- Entropy
- Redundancy

Existence of Infinitely Large 2-Dimensional Crosswords

New York World Crossword

- The first crosswords appeared in English children's puzzle books during the 19th century
- Arthur Wynne was a Journalist from Liverpool, England
- By the 1920s crosswords appeared in almost all American newspapers

New York Times Crossword

- 3-letter word minimum
- A word may only be used once
- Puzzle must have rotational symmetry
- Theme should be interesting and narrowly-defined
- Difficulty increases throughout the week
- Daily Crossword 15x15
 Sunday Crossword 21x21 or 23x23

Setup

- Empty crossword template (.txt)
- Themed words (100)
 Percent themed words (10%)
- Filler words Unix Dictionary (200K)

Filler Word Tree

- Composed of directories and text files
- Allows for quick lookup of partially filled words (regular expressions)
- A node (text file) in the tree contains a subset of the matching words

• Example: Query(Q--B) \Rightarrow fillerwords_4_1_Q_4_B.txt \Rightarrow [QUAB, QUIB] Count(Q--B) \Rightarrow 2

Filler Word Tree

Example

fillerwords_n.txt

fillerwords_n_i_a.txt

fillerwords_n_i_a_j_b.txt

Filler Word Tree

- Requires hours of preprocessing
- The structure is recyclable
- Words may be added or removed without regenerating the entire tree
- Unfortunately these 200K words require 200MB and are initially read from the disk (though memory is not a problem)

Word Rank Algorithm

- Inputs: Crossword, starting cell, and direction
- Outputs: Top ten matching words ranked by the sum of their stemming word count

Word Rank Algorithm

 $Query(Q--B) \Rightarrow [QUAB, QUIB]$

Example: RankWords(0, 0, Across)

QUAB_{score} = Count(Q--) + Count(U--) + Count(A-E) + Count(BAY)

= 2 + 34 + 17 + 1 = 54

QUIB_{score} = Count(Q--) + Count(U--) + Count(I-E) + Count(BAY) = 2 + 34 + 5 + 1= 42

Return [QUAB, QUIB]

Word Rank Algorithm

- Implicitly processes languages for common word structures
- Higher ranked words are more likely to fill and complete the crossword
- If there is an index in the fitting word that has no perpendicular, stemming words it is not returned in the ranked list (pruning for backtracking)

Recursive Backtracking

- 1. Starting at Root, your options are A and B. You choose A.
- 2. At A, your options are C and D. You choose C.
- 3. C is bad. Go back to A
- 4. At A, you have already tried C, and it failed. Try D.
- 5. D is bad. Go back to A.
- 6. At A, you have no options left to try. Go back to Root.
- 7. At Root, you have already tried A. Try B.
- 8. At B, your options are E and F. Try E.
- 9. E is Good. You are finished.

Crossword Fill Algorithm

- General Algorithm: Heuristic Backtracking
- Fills an empty crossword with a percentage of themed words and then completes it using the filler word tree

Crossword Fill Algorithm

- Heuristic elements have been implemented experimentally to improve performance
- Select the ranked words at random instead of choosing the highest ranked word at each intersection
- Recursive limits prevent the program from exhaustively searching for a solution down a failing path

Crossword Compiler Demonstration

```
. # . . . . Y # . . . # . . . #
   . . E # . . . . # . . N . # . . . . . .
...S#...#...##...S.
Press <Enter> to continue
```

Claude Elwood Shannon

- A Mathematical Theory of Communication – 1948
- The Father of Information Theory

Entropy (Information Theory)

- Definition: Entropy is the measure of uncertainty in a random variable
- Measured in bits
- High entropy implies less predictability
- Provides a limit on the best possible lossless compression of any transmitted data

Entropy (Information Theory)

Let's start with a fair coin flip

- Heads and tails are equally likely
- Entropy of one flip is one bit
- Entropy of two flips is two bits

Now suppose the coin always lands on tails.

How predictable is this?

Entropy (Information Theory)

Information Content

$$h(a_i) = \log_2 \frac{1}{w_i}$$

Shannon's Entropy

$$H(X) = \sum_{w_i > 0} w_i h(a_i) = \sum_{w_i > 0} w_i \log_2 \frac{1}{w_i} = -\sum_{w_i > 0} w_i \log_2 w_i$$

Example

Symbol (a _i)	Α	В	С	D	Sum
Weights (w _i)	0.50	0.25	0.15	0.10	1
Information Content (in bits) $(-\log_2 w_i)$	1	2	2.737	3.322	
Entropy $(-w_i \log_2 w_i)$	0.5	0.5	0.411	0.332	H(X) = 1.743

Redundancy (Information Theory)

- Definition: Number of bits in the transmitted data minus its entropy
- Wasted "space" when transmitting data
- Compression reduces redundancy

The Existence of Large 2-Dimensional Crosswords

- The redundancy of a language is related to the existence of crossword puzzles
- Zero redundancy is trivial
- If the redundancy is too high the language imposes too many constraints for large crosswords to be possible

The Existence of Large 2-Dimensional Crosswords

- A more detailed analysis shows that large 2-dimensional crossword puzzles are only possible when the redundancy is less than 50%.
- If the redundancy is less than 33%, 3-dimensional crossword puzzles should be possible, etc.

The Existence of Large 2-Dimensional Crosswords

- Edgar Gilbert is an American coding theorist and longtime researcher at Bell Laboratories
- Motivated by Shannon's assertions he estimated the entropy of English text to be 41.5% when eliminating words of length 1 and 2
- Infinitely large 2-dimensional crosswords are possible to construct, but 3-dimensional crosswords are not

References

- Crossword History www.crosswordtournament.com/more/wynne.html
- Recursive Backtracking - www.cis.upenn.edu/~matuszek/cit594-2002/pages/ backtracking.html
- Claude Shannon and Information Theory Wikipedia
- Crossword Puzzles and Shannon IEEE Information Theory Society Newsletter, Vol. 51, No. 3, September 2001