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Topology and the Language of Mathematics

Introduction

This book introduces the language of mathematics through
point-set topology. Little background in mathematics is as-
sumed.

It is a useful addition to current literature because:

1) The introduction of point-set topology for a primary au-
dience with little to no background in the subject is more
effective than some relevant literature in wide use today.

2) The introduction to the language of mathematics is more
accessible to the undergraduate / advanced high school math

student than some relevant literature in wide use today.

3) It serves as an excellent accompanying text to existing
relevant literature.

I hope you find it useful.

- Chris
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Chapter 1

Logic

1.1 Remark

X is a car implies X is a car or truck. That is, X is a car =
X is a car or truck. But X is a car or truck does not imply
that X is a car. For example, X could be a truck.

1.2 Remark

X is a car and X is blue = X is blue. But X is blue does
not imply that X is a car and X is blue. For example, X
could be a blue truck.

1.3 Remark

Suppose that Bob and Mary have had only one child and
that child’s name is Lucy. Then X is Bob and Mary’s child
—> X is named Lucy. But X is named Lucy does not imply
that X is Bob and Mary’s child.
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14 Topology and the Language of Mathematics

1.4 Remark

X is the state capital of Illinois implies that X is Springfield,
IL.

X is Springfield, IL implies that X is the state capital of Illi-
nois.

We can say this more concisely in the following way:

X is the state capital of Illinois if and only if X is Springfield.
X is the state capital of Illinois <= X is Springfield.

If we want to show that A is true if and only if B is true, we
will often show that A implies B and that B implies A.

1.5 Remark

The negation of the statement ‘Cindy is a cat’ is ‘Cindy is
not a cat.” The negation of ‘There exists an x in T such
that x is blarg.” is “There does not exist an x in T such that
x is blarg.” or equivalently, ‘Every x in T is not blarg.’

1.6 Remark

Suppose we want to show that every person in the world has
the quality of being blarg. Then it is enough to choose one
arbitrary person in the world, and show that person must
have the quality of being blarg.

For example: Suppose we want to show that every integer is

a rational number. Let x be an integer. Then r = f.
T is rational. Given an arbitrary integer x, we have shown

that z must be rational. So every integer is rational.

14
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1.7 Remark

Let P be the following statement: A implies B. The contra-
positive of P is the following statement: not B implies not A.
A statement is true if and only if its contrapositive is true.
Sometimes if you want to show that A implies B, it is easier
to show that not B implies not A. For example: The contra-
positive of ‘John is blarg implies Jason is bloog’ is ‘Jason is
not bloog implies John is not blarg.’

1.8 Remark

Let x be a rational number and let y be an irrational number.
Show x + g is an irrational number.

Proof. Since x is rational, x = 7 for some integers a and b,
b # 0. Suppose that x + y is rational. Thenz + y = £

d
a c

for some integers c and d, d # 0. So § + y = £ So
y = 5 — 3 Soy = bcb_d“d. a,b,c, and d are integers.
So be, ad, bd, and bc — ad are integers. So, we have shown
that y is rational. But y is not rational. So our assumption
that z + y is rational must have been false. So x + y is
irrational.

O

This is a proof by contradiction. We assume that something
is false and arrive at a contradiction. Then we conclude that
what we assumed is false is actually true. We will try not
to use proof by contradiction very often, since it is a little
awkward.
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Chapter 2

Sets

2.1 Definition

A set X is a collection of things.

If x is one of the things in X, then z is said to be an element
of X. This is written x € X. If x is not an element of X
we write z ¢ X. If x and y are elements of X, we write
r € Xandy € X orequivalently z,y € X.

2.2 Example

The set of people whose first name starts with T is a set. We
might write this set as: A = {z; =z is a person with a name
that starts with the letter T} We read this as ‘A equals the
set of all x such that x is a person with a name and this name
starts with the letter T.” (Notice the ; is read ’such that’)

My first name is Chris, so I am not an element of this set.
So Chris ¢ A. Suppose you choose a person named Tom.
Then he is in this set. We can say Tom € A. Note that A
contains millions of elements.

17
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2.3 Example

Let X = {0,1,2}. This set has three elements. Its three
elements are the numbers 0, 1, and 2. 0, 1, 2 € X. 3 ¢ X,
car ¢ X, and 2.012 ¢ X.

2.4 Definition

Suppose we have two sets, A and B. Suppose every element
of A is an element of B. Then we say that A is a subset of
B (or A is contained in B). We write A C B.

2.5 Notation

For the rest of the book, let R = the set of all real numbers,
Z, = the set of all integers, N = the set of all positive integers,
Q = the set of all rational numbers.

2.6 Example

NCZcQcR

2.7 Notation

For the rest of this book 3 means ‘there exists’ and V means
“for all’.

2.8 Definition

Let A be the set with no elements. Then A is called the
empty set. The empty set is often denoted ¢.

18
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2.9 Example
Let A={z €eR; x+2> —2and v+ 3 < =5}

Claim: A= ¢

Proof. Assume that A # ¢. Then 3t € A.
Sot+2>—-2andt+3 < —5.
Sot>—4and t < —8.
This is bad since there isn’t any such ¢t € R.
So our assumption that A # ¢ has led to a contradiction.
So A = ¢.

O

2.10 Result
Let X be any set.

Claim: ¢ C X

Proof. Suppose that ¢ is not contained in X. That means
dx € ¢ such that z € X. So 3z € ¢. But there is no x € ¢.
So our assumption that ¢ is not contained in X is false. So
¢ C X.

O

2.11 Example
Let X = {0,1}. Then ¢ C X (by 2.10). But ¢ ¢ X. X

has only two elements, the numbers 0 and 1. ¢ (along with
every other set) is not an element of X.

19
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2.12 Example
Let X = {¢,0}. Then ¢ C X by 2.10. X has two elements,
the number 0 and the set ¢. So ¢ € X and 0 € X.

2.13 Remark

This empty set stuff is a little awkward. We will use it be-
cause it will be useful to us. It helps in set theory similarly
to how having the number 0 and negative numbers in arith-
metic is sometimes useful.

2.14 Definition

Let A and B be sets.

Then A|JB ={z; x € Aorz € B}.
This is referred to as the union of A and B, or A union B.

Then A(\B ={z; x € A and z € B}.
This is referred to as the intersection of A and B, or A
intersect B.

2.15 Example
QNZ=7,QUz=Q,ZON=N, Z|N=Z.

2.16 Example

If A={1,23,58,1321,...} and B = {0,1,2,3,4,5} then
ANB={1,2,3,5}and AlJB = {0,1,2,3,4,5,8,13,21,.. .}

Part I. Preliminary Material

2.17 Remark

In 2.16 we did not list every element of A. A had an infinite
number of elements, and we described them in a way we
hoped was clear. Another possible way to describe the same
set A would have been the following. Let ny = 1. Let ny = 2.
For each integer ¢ > 3, let n; = n;_; + n; 5. Then define
A = {ng; k € N}. Whenever you must describe a set,
you should choose a way to correctly describe the elements
in a set, concisely and clearly. Sometimes it may be logical
to list every element of a set. Sometimes it may make more
sense to not.

2.18 Definition

Let A and B be sets. A = B means A C B and B C A.

2.19 Example

Let A = {cat, dog}, B = {parrot, dog}.

A B = {dog}
AJ B = {cat, dog, parrot}

Claim: {cat, dog, parrot} = {cat, dog, parrot, cat}

Proof. Let the set on the left hand side of the equals sign be
LHS. Let the set on the right hand side of the equals sign be
RHS.

LHS c RHS:
Every element of LHS is an element of RHS. So LHS C RHS.
RHS c LHS:
Every element of RHS is an element of LHS. So RHS C LHS.
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We have shown that LHS € RHS and RHS < LHS. So
LHS = RHS.
]

2.20 Definition

Let X and A be sets. Define X — A ={t;t € X and t ¢ A}.
X — A is called the complement of A in X.

2.21 Example
{0,1} CR

R - {07 1} = (_OO’ O) U(07 1) U(L OO), where
(—00,0) ={z € R; z < 0},

(0,1)={zeR; 0<z <1} and

(l,oo) ={z € R; = > 1}.

2.22 Example
Let A={z eR; 0<z<1},B={zeR,§ <z <3}

We can also write this A =[0,1), B = [3,3].

Claim: AN B = [3,1).

Proof. LHS C RHS:
Let x € A(B.
Then 2z € A and X € B.

SoO§x<1and%§x§3.
1

So x> z and z < 1. So z € 5, 1).
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RHS C LHS:

Let z € [1,1).

Then z > 0 and z < 1. So z € A.
And since z > % and r < 3,z € B.
Soxz e AN B.

(Why are we done?)

2.23 Example

Let B =R — Q (the set of irrational numbers).
QUB=Rand Q"B =¢

2.24 Problem

Let X =N, A=1{2,4,6,8,...}
What is X — A? Describe this set in three different ways.

2.25 Problem

Let A and B be defined as in 2.22. Show A|J B = [0, 3].

2.26 Definition

If X has exactly n elements for some n € N[ J{0}, then we
say X is finite .

2.27 Example

{0,1,2,10} is finite (with 4 elements).
R and N are not finite (Why?).
¢ is finite (with 0 elements).

23
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2.28 Definition

If a set X is not finite, then we say that X is infinite .

2.29 Example

R and N are infinite.

2.30 Result

Claim: The complement of a union of sets is the intersection
of the complements of those sets. (DeMorgan)

Proof. LHS C RHS: Let = be in the complement of a union
of sets. Then x is not in the union of these sets. So x is not
in any of the sets. So, for every set, x is in its complement.
So x is in the intersection of the complements of all the sets.

RHS C LHS:

Let x be in the intersection of the complements of the sets.
Then z is in the complement of each of the sets. So, x is not
in any of the sets. So x is not in the union of the sets. So x
is in the complement of the union of the sets.

O

2.31 Problem

Show that the complement of an intersection of sets is the
union of the complements of those sets. (DeMorgan)

24
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2.32 Result

Let A C X.
Claim: X — (X — A) = A.

Proof. Let 1 € X —(X —A). Thenxz € X and x ¢ X — A, so
r €A Let x € A, Then x ¢ X — A. Since A C X,z € X.
Sox e X — (X —A). (Why are we done?)

U

2.33 Problem

Let A, B, and C be sets.
Show (ANB)YJUC=ANBUC) < C C A.

Proof. —

Suppose (AN B)JUC = AN(BUC). We want to show that
C C A. So, let x € C. We want to show that x € A. Since
reC,ze(ANB)UC. Soz e ANBUYC). Soz € A.

<= Suppose C' C A.
We want to show (AN B)JC =ANBUO).

LHS C RHS:
Let z € (AN B)UC. Then z € (A(\B) or z € C.

Case 1: x € ANB
Then z € A and ¢ € B. Since x € B,x € BJC. So
re ANBUO).

Case 2: z € C.

Then z € B|JC. Since C C A,x € A. Soxz € AN\(BUO).
So we have shown that when we suppose C' C A,

25
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(ANBUC cANBUO).

There is one thing left to show ...

then show it.

notice what that is, and

O

Chapter 3

Functions

3.1 Definition

Let A and B be sets. A function f from A to B is a rule
that assigns to every a € A precisely one b € B. Ais
called the domain of f and B is called the codomain of f.
When f assigns a to b, we say that f(a) = b. We read this
‘f of a equals b’.

3.2 Example

Let f(z) =2 +2Vax eR.
Claim: f is a function from R to R.

Proof. Let x € R. f(z) = 2+ 2. z+2 € R. And there
is only one number in R that is equal to z + 2. So f is a

function from R to R.
O

Showing a function really is a function is often called showing
a function is well-defined.

27
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3.3 Notation

Let A and B be sets. If we want to say ‘f is a function from
A to B’, we will often write f: A — B. Soin 3.2 on the
preceding page, f: R — R.

3.4 Example

A function f : A — B can assign lots of different ele-
ments of A to the same element of B. For example, let
f:Z — {0,1,2,3}, where f(z) =1Va € Z. f reallyis a
function. Every element of Z gets assigned to exactly one el-
ement in {0, 1,2,3}. And lots of integers are being assigned
to the same thing. Some functions assign every element of
the domain to a different element of the codomain ...

3.5 Definition

Let A and B be sets, and let f : A — B. We say f is
1-1 (read "one to one") or injective when f(z) = f(y)
implies x = y. Or, equivalently, when x # y implies that

f(@) # f(y).

3.6 Example

Let f:Z — R, f(z) = 2x.
Claim: f is 1-1.
Proof. Suppose f(z) = f(y). f(z) =2z and f(y) = 2y. So

2x =2y. Sox =1y. So fis 1-1.
U
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3.7 Example
Let X = {z € R; x > 0}. Let f: R — X, f(x) = 2%
Claim: f is not 1-1.

Proof. f(1)=1= f(—1), but 1 # —1. So f is not 1-1. [

3.8 Remark

In our definition of a function we required every element in
the domain to be sent to an element of the codomain. How-
ever, we didn’t require that every element in the codomain
get an element of the domain assigned to it. For example,
let f:{0,1,2} — {0,1,2}, f(x) =0V x € {0,1,2}. Then
f is a function, but not every element of the codomain gets
an element of the domain assigned to it (for example, there
isno ¢t € {0,1,2} such that f(¢) = 1). Some functions assign
an element of the domain to every element of the codomain.

3.9 Definition

Let A, Bbesetsand f: A— B. WhenVb € B3da € A
such that f(a) = b, we say that f is onto . Equivalently, we
may say f is surjective .

3.10 Example

Claim: The function f in 3.2 is onto.

Proof. Let y € R. Then y — 2 € R.
And f(y—2)=(y—2)+2=y. So f is onto. (Why are we
done?) O
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3.11 Example

Claim: The function f in 3.4 is not onto.

Proof. 2 € {0,1,2,3}. And there is no x € Z such that
f(z) =2. So f is not onto. O

3.12 Remark

Suppose you have a function f: A — B.

If f is 1-1, you might think of A as at least as ‘big’ as B.

If f is onto, you might think of B as at least as ‘big’ as A.
See 3.27 on page 35 for an example of why care should be
taken in this interpretation.

Some people get excited about functions that are both injec-
tive and surjective.

3.13 Definition

Let f: A — B. Let f be injective and surjective. Then we
say that f is bijective . We call f a bijection from A to B
or from A onto B.

3.14 Example

Let f:{0,1} — {0,1} where f(0) =1 and f(1) = 0.

Claim: f is bijective.
Proof. f is both 1-1 and onto.

30
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3.15 Example
Let f: Q — R, f(z) = x.
Claim: f is 1-1, but not bijective.

Proof. f is 1-1:
Suppose f(z) = f(y). f(z) =z and f(y) =y. Sox =y.

f is not onto:

V2 € R. But there is no x € Q such that f(z) = v/2. Why?
Suppose that there is such an 2. Then f(z) = x = v/2. But
we claim that /2 ¢ Q.

Lemma: V2 ¢ Q

Proof of Lemma. Suppose that v/2 € Q. Then for some
Ty € Z, V2 = %, where x # 0 and % is written in low-
est terms (that is, x and y are relatively prime).
So \/52 = %2.
So 2 = ;’j—;
So 2y? = 2. The square of an odd number is odd, and 2y?
is even. So x must not be odd. That is, x is even.
So x = 2t for some t € Z. So 2y* = 2% = (2t)? = 41>
So we have 2y? = 4t%.
So 3% = 2t2.
Since the square of an odd number is odd, and since y? is
even, y must be not odd. That is, y is even.
So x and y are even. But we assumed that x and y are rel-
atively prime. So this is a contradiction to our assumption
that v/2 € Q. So v2 ¢ Q.

O

Our assumption that 3z € Q such that f(z) = v/2 has led to
a contradiction. So there is no such z. So f is not onto. O
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3.16 Definition

Let A, B,and C' besetsand f: A — Bandg: B — C.
Then we can define h = go f, h : A — C with h(z) =
g(f(z))Vx € A. That is, we take z € A, we use f to
send it to f(x) which is an element of B. Then we take this
element of B, f(z), and we apply g to it getting g(f(z)).
We say h is ¢ composed with f or the composition of g
with f.

3.17 Example

Let f:Z — Q, g: Q — X where X = {z € R;z > 0}.
Let f(x) =aVxz € Z. And let g(z) = /azVz € Q.

Let h=go f.

Then h(2) = ¢((2)) = ¢(2) = V2.

h(16) = g(f(16)) = g(16) = /16 = 4.

3.18 Definition

Let f: A— A. When f(x) =xVx € A, we say that f
is the identity on A. We will sometimes write f = id4 or
f=id: A— A.

3.19 Definition

Let f: X — Y and g: X — Y. We say that f = g when
flz)=g(x)Vxe X.

Part I. Preliminary Material

3.20 Definition

Let f:A— B, g: B— A. Let h=go f,and j = fog.
Note that h: A — Aand j: B — B. When h =idy
and j = idp, we say that f is the inverse of g, and g is the
inverse of f. That is, f = g~!. The use of the phrase ‘the
inverse of’ is ok, because the inverse of a function is unique.

Note that if f = ¢~!, then we automatically have g = f~1.

We say that f and g are inverses of each other.

3.21 Result
Let id : X — X.

Claim: id™' = id

Proof. id(id(z)) = id(x) = Vo € X. So id is its own

mverse. ]

3.22 Example

Let A={z e R; z >0}
Let f: A— A, f(z) =vVzVzeR.
Let g: A— A g(z) =2V eR.

Claim: f =g~ !

Proof. f(g(x)) =
9(f(x)) = 9(Vr) =
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3.23 Result
Let f: X — Y.

Claim: f~1 exists if and only if f is bijective.

Proof. = Suppose 3 f1:Y — X.
f is onto:
Let y € Y. Then f~l(y) = x for some z € X, since f~!

is well-defined. And f(z) = f(f~'(y)) = (fo fYH)(y) =
idy (y) = y.

fis 1-1:
Let f(x1) = f(x2)

Then f=(f(x1)) :_f_l(f((@))

(f 7o f)(@1) = (f7" o f)(x2)
But f_l of =1dx.

So we have id(z;) = id(z2).
So x1 = 9.

So we now have f is bijective.

p—
Let f : X — Y be a bijection.

We want to construct f~!. Let y € Y. Then 3z € X such
that f(x) = y, since f is onto. Since f is 1-1, we know this
x is unique. So for each y there is exactly one x such that

f(z) = y. And that’s good.

For each y € Y, choose the one z € X such that f(z) =y,
and let f~1(y) = x. We have defined the function f~1. So
we are done. d

34

Part I. Preliminary Material

3.24 Problem

Let X, Y, and Z be sets.
Let f: X — Y and g : Y — Z be bijective and define
h=go f. Show h™! exists and h™! = f~log L

3.25 Problem

Let f:A— B, g: B— C, h=gof.

Decide whether each of the following four statements is true
or false and show why.

1) If h is surjective, then f is surjective.

2) If h is surjective, then g is surjective.

3) If h is injective, then f is injective.

4) If h is injective, then g is injective.

3.26 Problem

Let f:A— B,g: B— C, h=gof.

Show the following:

1) If f and g are injective, then h is injective.
2) If f and g are surjective, then h is surjective.
3) If f and g are bijective, then h is bijective.

3.27 Problem

Construct a bijection from [0, 1] to (0, 1).

Hint: Let A= {,%,1,%,.. .} andlet B = {z;2 € (0,1)—A}.
Construct a function f where f(b) = bV b € B, and

f(2) = 5 Vn € {2,3,4,5,...}. You should then define

n n+2
f(0) and f(1) in a useful way, and show that f is indeed a

35
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bijection.

This gives a reason why we should be careful using the word
"big" for infinite sets in the manner it is used in 3.12 on
page 30. Why?

3.28 Problem

Let f: A— A, g = fof, and g injective. Show f is
injective.

3.29 Problem

Let ¢d : X — X. Show ud is bijective.

3.30 Definition

Let AC X, f: X — Y. Define f(A) ={yeY; y=f()
for some x € A}. We sometimes call f(A) the image of A
under f.

Let B C Y. Define f~%(B) = {z € X; f(z) € B}. We
sometimes call f~1(B) the inverse image of B under f.

Note that f~!(B) exists even when no function f~! exists.

3.31 Example

-1 forz <0
1 forx >0

Define f: R — {—1,1}, f( ):{

36
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Note this is read as f(z) is -1 for x less than or equal to 0,
and f(z)is 1 for x greater than 0.

f([=2,1) = {-1}
f(=1,0.1)) = {=1,1}
J7{=1}) = (=00,0]
J7({1}) = (0, 00)
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Chapter 4

Exam

It is strongly recommended that you do not continue to the
next part until the following exam is easy.

)
Define z € Z to be odd if x = 2t 4 1 for some t € Z.
Define y € Z to be even if x = 2t for some t € Z.
Show all of the following:

There is no integer that is both even and odd.

The sum of two odd integers is even.

The sum of two even integers is even.

The sum of an odd integer and an even integer is odd.
The square of an odd integer is odd.

The square of an even integer is even.

2) Let A C B. Show that A(YB=Aand A B = B.
3) Let X be a set. Show that ¢ X = ¢ and ¢|J X = X.
4) State the negations of the following two statements:

a) There are no x’s in Y such that X is blarg but not bloog.
b) All z’s are bloog.
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fine X = {0,{0}, 1}. Which of these are elements of X

6) Let f be defined as in 3.15 on page 31. We showed f is
not bijective. Which of the following exist
a) f71(Q)
(R-Q)
~1({2})
({v2}
Part 11

Definition of Topology




Chapter 1

Topology

1.1 Definition

Let X be a set. A topology on X is a set T" whose elements
are subsets of X having the following three properties:

1) ¢ and X are open
2) Given any collection of open sets, their union is open
3) Given any two open sets, their intersection is open

Each element of T" called an open set.

When we have a set X and a topology 7" on X, we call (X, T)
a topological space or simply a space . We say that X
is equipped with the topology T. When it should cause no
confusion, we will sometimes just say X is a space (omitting
naming the topology).

The definition of a topology may seem a bit awkward. We
will do lots of examples to try to make dealing with it easy.
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1.2 Notation
Let (X, T) be a space.

The following all mean the same thing:
1) U is an open set in the topological space (X, T)
QU eT

And, if the topology T is understood:
3) U is open in X
4) Uren C X

And, if both the set X and the topology 7" on it are under-
stood:
5) U is open

1.3 Example

Let X be aset. Let T'= {¢, X}

Claim: (X, T) is a topological space.

Proof. 1) ¢, X € T.

2) A collection of open sets either includes X or does not. If
it includes X, then the union of this collection is X, which
is open. If it does not include X, then every element in the
collection is ¢. And the the union is ¢, which is open. So for
any collection of open sets, we have shown that their union
is open.

3) Let U1,U2 c T.

Part II: Definition of Topology

Case 1: Uy or Uy = ¢
Then U, (Uz = ¢, which is open.

Case 2: U and Uy # ¢.
Then Uy = Uy = X. And U; (Us = X, which is open.

So (X, T) is a topological space.

1.4 Definition

When a set X is equipped with a topology T" and the ele-
ments of T" are precisely ¢ and X (as in 1.3), T is said to be
the indiscrete topology .

Note that we have just found a way to turn any set into a
topological space. The set X might have numbers, or cars,
or matrices as elements. It doesn’t matter. We now have a
way to turn the set into a space.

1.5 Example

Let X be a set, and let T ={U; U C X}.
In other words, let every subset of X be open in X.

Claim: T is a topology on X.

Proof. 1) ¢ C X, so ¢ is open.
X C X, s0o X is open.

2) Let {X,} be a collection of open sets of X. Each X, is
contained in X. So the union of these sets is contained in
X, and thus open in X.
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3) Let Uy, U € X. Uy (\Uz € X. So Uy (U, is open in
X.
O

1.6 Definition

When a set X is equipped with a topology T" and every subset
of X is an element of T' (as in 1.5), then we say that X has
the discrete topology .

1.7 Example

Let X ={0,1}. Let T' = {¢,{0,1}, {0}, {1}}.
T is the discrete topology on X. Or equivalently, (X,7T) is
discrete.

1.8 Definition

Let (X, T) be a space. When o € UP*" C X (that is, x € U
and UP*" C X), then we say U is a neighborhood of x.

1.9 Example

Let X = {0,1,2}. Let T = {¢,{0,1,2},{0,1},{1,2}}.

Claim: T is not a topology on X.

Proof. {0,1} and {1,2} are open. {0,1}({1,2} = {1}
which is not open. So (X, T') is not a topological space. O
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1.10 Problem
Let X = {0,1,2}. Let T = {¢, {0,1,2},{0,1}, {1,2}, {1}}.
Show (X,T) is a space.

1.11 Definition

Let (X,T') be a space. Saying z is a point of X is equivalent
to saying z € X.

1.12 Problem

Let X = {Jason, Luke} How many different topologies are
there on X7 Suppose we take a set Y that has two elements,
but the elements are not necessarily Jason and Luke. How
many different topologies can you place on that set?

1.13 Problem

Let X = {the greek letter 7, the number represented by the
greek letter 7, 3.1}. How many different topologies can be
placed on X7

1.14 Problem

In R, for a < b, an open interval (a,b) is the set of real
numbers greater than a and less than 0. In other words,
(a,b) = {x; a < x < b}. We require a < b. If a > b, then
(a, b) is not defined.

Suppose you try to define a topological space (R, T') where
the open sets are ¢, R and every open interval (a,b) where
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a,b € R? Is (R, T) is a topological space? (Hint: the answer
is no).

Chapter 2

Standard Topology on R

2.1 Definition

Recall that in 1.14 on the facing page we defined an open
interval in R.

Let T = {A; A= ¢ or Ais a union of open intervals in R}
Then we call T' the standard topology on R . We call it
a topology because it is one. But we need to show that it is,
which we do now ...

2.2 Result

Let T" be the standard topology on R.

Claim: (R, T) is a topological space.

Proof. 1) Unions of open sets are unions of unions of open
intervals which are unions of open intervals, thus open.

2) ¢ is open. And for each n € N, (—n,n) is open. So
Us—,(=n,n) is open (by 1) above). It would be nice if
U,—,(—n,n) = R. Then we will have shown that R is open.
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Lemma: | )77 ,(—n,n) =R

Proof of Lemma. LHS C RHS:

Let 2 € |J,—,(—n,n). Then = € (—n,n) for some n € N. So
r e R.

So x € RHS.

RHS C LHS:
Let x € RHS. Then x =0,z > 0, or x < 0.

Case 1: If = 0, then x € (—1,1) and so z € LHS.

Case 2: If v > 0, then 3¢ € N such that ¢ > z. And
€ (—t,t). So x € LHS.

Case 3: If x < 0, then 3¢ € N such that —t < x. And
€ (—t,t). So x € LHS.

So we have shown that RHS C LHS.
So we have shown that LHS — RHS.
So we are done with both the lemma and 2). O

3) Let Uy, Uy be open. Each is a union of open intervals
or empty. Uj[()Us is a union of open intervals or empty

(Why?). So Uy [ U, is open.

So (R, T) is a topological space.

2.3 Example

Let R have the standard topology. Let a € R.
Let (a,00) = {z € R; z > a}.

Claim: (a,00) is open.

Part II: Definition of Topology ol

Proof. There are lots of integers bigger than a. Choose one,
and call it T. Look at (a, T), (a, T+ 1), (a, T + 2), etc.
Let A; = (a,T +14) Vi e NJ{0}.

Each A; is open. So |J;2, A; is open.

If we can show that [ J;°, A; = (a,00), then we are done.

Lemma: ;= Ai = (a,00)

Proof of Lemma. Let x € |J;2, A;. Then x € A;, for some
i €40,1,2,...}. Soz € (a,y) for some y € R, y > a.
So z € (a,00). Let z € (a,00). 3 M, T € N such that
M>T>z x€(a,M)=Apy_r. (Why?)

So z € U2, Ai.

2.4 Problem

Let R have the standard topology. Show (—o0, a) is open in
R.

2.5 Remark

Let a,b € R,a > b.

[a,b] = {z € R; a <z < b}.
[a,0) = {x € R; a < x < b}.
(a,b) = {x € R; a < x < b}.

[a, b], [a, b), (a,b] are all not open in R. Tt is awkward to show
this with the tools we have now. We would have to show that
we could not write any of them as a union of open intervals.
In Chapter 5 we will introduce some tools that make showing
these are not open easy.
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2.6 Remark

Note that we have some topologies that we can place on any
set (discrete, indiscrete), and one topology (the standard
topology on R) that we can only place on R. In what sense
does it make sense to think of the discrete and indiscrete
topologies on a given set as two extremes?

Next we will introduce one more topology we can place on
any set. Then we will introduce a little more topological
language and apply it a bunch to all of the topologies that
we have discussed.

Chapter 3

Cofinite Topology

3.1 Definition

Let X be a set, and let A C X. When X — A is finite, we
say A is cofinite.

3.2 Result

Let X be a set and let T = {U C X; U is cofinite or U = ¢}

Claim: T is a topology on X.

Proof. 1) ¢ is open.
X — X = ¢ is finite, so X is open.

2) Take a collection of open sets. We know that each set is
empty or has finite complement. Let’s take the union of all
the open sets. We hope this is open.

Case 1: All the sets are empty.
Then the union of all the sets is empty, which is open.
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Case 2: Not all the sets are empty.

We want to show the union is open. We will show the com-
plement of the union is finite. The complement of the union
is the intersection of the complements, by 2.30 on page 24.
We know at least one of the sets is not empty. So the comple-
ment of at least one of the sets is finite. So the intersection
of all the complements is finite. So the complement of the
union is finite. So the union is open.

3) Let Ul; UQ be open. X — (Ul ﬂ UQ) = (X—Ul) U(X—Uz)
(by 2.31 on page 24)

Case l: X Uy =Xor X —U;, =X.
Then (X — Up) J(X — Uz) = X which is open. So U (\Us

is open.

Case 2: X —U; # X and X — Uy # X.
Then X — U; and X — U, are finite.
The union of two finite sets is finite.
So X — (Ul ﬂ UQ) is finite.

So Uy Uy is open.

So (X, T) is a topological space.

3.3 Definition

Let X be any set. When we equip X with the topology
T ={U C X; U is cofinite or U = ¢} we say X is equipped
with the cofinite topology .
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3.4 Example

Suppose X is finite, and let 7' be the cofinite topology on
X. What are the open sets of the space (X,T)? For every
subset of X, the complement of it is also a subset of X. So
the complement of it is finite (since every subset of a finite set
is finite). So the complement of every subset of X is finite.
So every subset of X is open. So, what have we shown?
We’ve shown that if X is finite, the cofinite topology on X
is the same as the discrete topology on X.

3.5 Example

Equip R with the cofinite topology. Let’s figure out what
some of the open sets look like.

We know ¢ and R are open, so there’s two open sets.

The complement of (—o0,0)|J(0,00) is {0} which is finite.
So (—00,0) J(0,00) is open. In fact, for every a € R, the
complement of (—oo,a) |J (a, co) = {a} which is finite.
So (—o00,a) |J (a, o0) is open for every a € R. So we've
now found infinitely many open sets in (R,7"). Let’s find
more.

Can you find an open set that we haven’t mentioned yet?
There are infinitely many that we haven’t mentioned.

Now let’s find some sets that are not open. Let’s prove a
lemma first ...

Lemma: Let Y be finite, Y C X, and X infinite. Then
X —Y is infinite.

Proof of Lemma. Y |J(X —Y) = X. Suppose X —Y were
finite. Then Y |J(X —Y) would be finite (since Y is also
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finite). But Y |J(X —Y) = X and X is not finite. So X —Y
cannot be finite. So X — Y is infinite.
O

The complement of any non-empty finite set in R is infinite.
(by Lemma)

So every non-empty finite set in R is not open in the cofi-
nite topology. Why is the word ‘non-empty’ necessary in the

previous sentence?

So we now have infinitely many sets that are not open. For
example, {1},{1,2},{1,2,3}, etc ... are not open.

3.6 Problem

Let R have the cofinite topology. Show that there are in-
finitely many infinite sets that are not open in R.

3.7 Problem

Let X = {0,1,2,...,10001987129871986565221832176815865121
Equip X with the finite complement topology. What are the
open sets of X7 How does the answer change if we make
2183217681586512 a bigger positive integer?

If Y = {a,b} and we equip Y with the cofinite topology, then
what are the open sets in Y7 List them explicitly.

3.8 Result

Clatm: On R the cofinite topology is not the same as the
discrete topology.

Part II: Definition of Topology o7

Proof. In the cofinite topology, [0, 1] is not open. In the
discrete topology, [0, 1] is open. O

3.9 Result

Claim: On R the cofinite topology is not the same as the
indiscrete topology.

Proof. In the cofinite topology, (—o0,0) |J(0,c0) is open. In
the indiscrete topology, it is not. O

3.10 Result

Claim: On R the cofinite topology is not the same as the
standard topology.

Proof. In the cofinite topology (0,1) is not open. In the
standard topology it is. O
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Chapter 4

Closed Sets

4.1 Definition

Let A C X. A is said to be closed in X when X — A is
open in X. We may sometimes write A%*? c X. We will
sometimes simply say A is closed when its being closed in X
should be clear.

4.2 Result

Let (X, T) be a space.

Claim: X is both open and closed in X.

Proof. X must of course be open in X since X is a space.
To show X is closed, we need to show that X — X is open.
But X — X = ¢ which is open. So X is closed in X. 0

4.3 Result

Let (X, T) be a space.




60 Topology and the Language of Mathematics

Claim: ¢ is both open and closed in X.

Proof. ¢ is openin X, since X is a space. To show ¢ is closed
in X, we need to show that X — ¢ is open. But X —¢ =X
which is open. So ¢ is closed in X. O

4.4 Result

Let X have the cofinite topology.

Claim: Aosed — X <« A is finite or A = X.

Proof. = Let A°°*¢® ¢ X. Then X — A is open in X. So
A is finite or A = X.

<= Suppose A is finite or A = X.
Case 1: A is finite. Then X — A is open. So A is closed.
Case 2: A = X. Then A is closed by 4.2. O

4.5 Example

Equip R with the standard topology.

Claim: [0,1] is closed in R.

Proof. R—[0,1] = (—00,0) J(1,00). This is a union of open

sets (by 2.3 on page 50 and 2.4 on page 51), thus open. So
[0,1] is closed. O

4.6 Example

Equip R with the standard topology.

Part II: Definition of Topology

Claim: {a} is closed for any a € R.

Proof. R — {a} = (—00,a)|J(a,o0). This is the union of
open sets (by 2.3 on page 50 and 2.4 on page 51) thus open.
So {a} is closed. O

4.7 Example

Equip R with the standard topology.

Claim: Every finite set in R is closed.

Proof. Let A be a finite set in R. Let the finite number of
(distinct) elements of A be x1,zs,...,z,. Order these real
numbers from smallest to greatest, a; < as <...< a,, where
ay is the smallest of the z;, as is the second smallest of the
Zirg, - ., and a, is the largest of the x;.

Let B = {aj,aq,...,a,}. Note that B = A (we have just
reordered the elements of A in a convenient way).

R—B=(—00,a1) U (a1,a2) U-..-U (an_1,a,) U (an, 0).
This is a union of open sets in R, thus open. So B is closed.
And A, which is equal to B, is also closed. O

4.8 Example

Equip R with the standard topology. Let a,b € R, a < b.

Claim: [a,b] is closed in R.

Proof. R — [a,b] = (—o00,a) | (b,00). This is the union of
open sets in R, thus open. So [a, b] is closed in RVa, b € R.
[
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4.9 Problem

Let X be a space. Let A" C X, Béosd ¢ X B C A.
Show A— B is open. (Hint: Show A — B = A () (X — B))

4.10 Result

Let X be any set and equip it with the discrete topology.
Claim: Every subset of X is closed.

Proof. Let U Cc X. X —U C X,s0 X — U is open. So U is
closed. m

4.11 Result

Let X be any set. Let X have the indiscrete topology.

Claim: The only closed sets in X are ¢ and X.

Proof. Suppose U**? ¢ X. Then X — U is open. The only
open sets in X are ¢ and X. So X —U =¢or X —U = X.
FX-U=¢,thenU=X.1f X—-U=X,then U =0¢. O

4.12 Result
Let X =(0,1) [J[2,3]. Let R have the standard topology.
Let T = {V; V = U () X for some U?" C R} (in 1.1

on page 113 we will show that (X, T') is indeed a space, which
we will call the ‘subspace topology’).

Claim: [2, 3] is both open and closed in (X, T).
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Proof. [2,3] = (1.5,3.5)()X. And (1.5,2.5) is open in the
standard topology on R. So [2,3]P*" C X.

To show [2, 3] is closed in X, we need to show that X — [2, 3]
is open in X. X —[2,3] = (0,1). We need to show that (0, 1)
is open in X.

(0,1) = (0,1) N X. And since (0, 1) is open in the standard
topology on R, we have shown that (0, 1) is open in X. So
[2, 3] is closed in X. O

4.13 Result

Let R have the cofinite topology and define
A = (—00,0) J (0.000001, c0)

Claim: A is not open in R and A is not closed in R.

Proof. R — A = [0,0.000001] which is not finite and not
empty. So A is not open in R. A is not finite, and A does
not equal R. So, by 4.4, A is not closed. O
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Chapter 5

Some Useful Tools

5.1 Definition

Let (X,T) be a space. Let x € A C X. x is said to be an
interior point of A if 3 a neighborhood U of x such that
U cC A

5.2 Example

Look at R with the standard topology. Let A = (2.3,8) C R.

Claim: 5 is an interior point of A and 2.3 is not an interior
point of A.

Proof. 5 € (4,6) which is open in R and contained in A.
So 5 is an interior point of A.

Suppose U is any neighborhood of 2.3. Then U is a union of
open intervals in R (since U is open and these are the only
non-empty open sets). 2.3 is an element of at least one of
these open intervals. Choose one of them and call it (a,b).
Since 2.3 € (a,b), 2.3 # a and 2.3 # b. So a < 2.3. So (a,b)
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is not contained in A. (Why? ... (a,b) has lots of points in

(2.34a) -

it that are not in A. For example, the number “=5= is one

of them.)

And since (a,b) C U, U is not contained in A. So what have
we done? Given any neighborhood of 2.3, we have shown
that this neighborhood is not contained in A. So we have
shown that 2.3 is not an interior point of A. O

5.3 Definition

Let x € A C X. z is said to be a limit point of A if every
neighborhood of z intersects A — {z}. Equivalently, z is a
limit point of A if the following is true: x € U?" C X —-

UN(A—{z}) # 0.

5.4 Problem

Look at R with the standard topology. Let A = (2.3,8) C R.
Show 5 and 2.3 are both limit points of A.

5.5 Result

Let X be a space, A C X.

Claim: AP C X <= every element of A is an interior
point of A.

Proof. = Let A be open. Let x € A. Then since A C A,
A is a neighborhood of x in A. So z is an interior point.

<= Suppose every element of A is an interior point of A.
Then for each x € A we have a neighborhood of z, U, C A.
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Take the union of all these neighborhoods, | J, .y Us.

Lemma: J,cx Uy = A

Proof of Lemma. Let x € |J,cx Uy. Then x € U for some U
that is one of the sets in the union. U C A. So z € A.
Let 2 € A. Then x € U, and U, C |J,cx U
Sox € U,ex Us
]

U.,ex Uz is open, since it is a union of open sets. So, by the

Lemma, A is open.
0

5.6 Result

Claim: A9os*d ¢ X <= A contains all its limit points.

Proof. = Let A be closed. Let x € X — A. We want to
show that x is not a limit point of A. Since A is closed,
X —Aisopen. Let U=X —A. x € U. And U A = ¢.
So we have shown that there is a neighborhood of z, U, that
does not intersect A. So x is not a limit point of A. So we
have shown that if A is closed, then no point outside of A
can be a limit point of A. In other words, A contains all its
limit points.

<— Let A contain all its limit points. Let x € X — A. x is
not a limit point of A. So 3 a neighborhood of z, U, such
that U does not intersect A. So x is an interior point of
X — A. So, by 5.5, X — A is open. So A is closed.

[
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5.7 Result

Let R have the standard topology, let a,b € R, a < b.

Claim: [a,b] is not open in R.

Proof. ais not an interior point of [a, b], because every neigh-
borhood of a slips outside of [a,b] (Why?). That is, for any
neighborhood U of a, U is not contained in [a,b]. So by 5.5,
[a,b] is not open in R. O

5.8 Problem

Let R have the standard topology, let a,b € R, a < .
Show (a, b] is not open in R.

5.9 Problem

Let R have the standard topology, let a,b € R, a < b.
Show [a, ) is not open in R.

5.10 Problem

Let R have the standard topology.

Find the following:

1) A set that is open and not closed

A set that is closed and not open

A set that is open and closed

A set that is not open and not closed

2)
3)
4)

Chapter 6

Some Notes on the
Definition of a Topology

6.1 Result

Let (X, T) be a topological space.

Claim:
1) ¢ and X are closed.

2) The union of any two closed sets is closed.

3) The intersection of any collection of closed sets is closed.

Proof. 1) 4.2 on page 59, 4.3 on page 59

2) Let Uy and U; be closed in X. Then X — Uj is open and
X — U, is open.

So (X —Uy) ("(X — Us) is open.

But (X - Ul) ﬂ(X - UQ) =X — (U1 UU2)

Since this is open, U |J Us is closed.
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3) Suppose we have a bunch of closed sets. We want to show
that their intersection is closed. So we want to show that
the complement of their intersection is open. But the com-
plement of their intersection is the union of the complements
(by DeMorgan). Since each set is closed, each of the com-
plements is open. And the union of these open sets is open.
So we have shown that the complement of their intersection
is open. So we have shown that their intersection is closed.
So we are done. O

6.2 Result

Claim: The intersection condition in the definition of a topol-
ogy (in 1.1 on page 43) is equivalent to requiring the follow-
ing: The intersection of any finite collection of open sets is
open.

Proof. <= Suppose we know the intersection of any finite
collection of open sets is open. Then we know in particular
that the intersection of any two open sets is open.

= Suppose that the intersection of any two open sets is
open. Let Uy, Us, ..., U, be open. Then U; (U, is open.
So (Uy(Us) (Us is open, since it is the intersection of two
open sets. Continuing in this way, we get
(U:NU2N---NUaz1) N U, is open.

But this is precisely Uy YUz (). ..[) Un.

6.3 Problem

Let X be a space. Show the union of any finite collection of
closed sets is closed.

Part 111

Homeomorphisms




Chapter 1

Basis for a Topology

1.1 Definition

Let X be a set, and B be a collection of subsets of X. If the
elements of B satisfy the following two properties, then we
call B a basis for a topology on X.

1) Vo € X 3 B, € B such that z € B,.
2) Whenever z € By (| By for some By, By € B, then
3 B3 € B such that x € B3 C B[ Be.

Given a set X and a basis B we define the topology 1" gener-

ated by B as follows: U C X is open when Vo € UJdB, € B
such that x € B, C U.

1.2 Result
Let X be a set, and let B be a basis.

Claim: The ‘topology’ we defined in 1.1, with basis B, really
is a topology.
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Proof. 1) ¢ is open vacuously (if it were not open, then there
would exist x € ¢ such that there does not exist a B, € B
such that z € B, C U. But there does not exist any x € ¢
at all).

X is open: Let x € X. We need to show that 4 B, € B
such that x € B, C X. The definition of a basis gives us a
B, € B such that z € B,. And B, C X. So X is open.

2) Suppose you have a collection of open sets. We want to
show that their union is open. So we want to show that for
every x in their union there is a basis element containing x
that is a subset of the union. But this is trivial ... Since each
of the sets in the union is open, for every z in every one of
the open sets, we have a basis element containing x that is
contained in the open set ... which is contained in the union
of the open sets. So we have nothing else to show.

3) Let Uy, Uy be open.

We want to show that U; (| Uz is open. So, we want to show
that for every = € U; (\Uy 3 a basis element B, such that
r € B, C U (Us.

So let z € Uy (\Us. Since x € Uy (which is open) 3 B; € B
such that x € B; C U;. Since x € U, which is open, 4B, € B
such that x € By C U,.

So x € By () Bs, the intersection of two basis elements. Since
B is a basis , 3 By € B such that 2 € By C By B2. And
Blnt C UanQ. Sox € By C Uanz. So UanQ is
open.

So a basis for a topology really does define a topology, in the
precise way we have mentioned. O
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1.3 Result

Let X be a set, and B be a basis on X. Let T" be the topol-
ogy generated by B. Let 7" = {U; U is the union of elements
of B}.

Claim: T =T'.

Proof. T C T

Let U € T. Since U is open in the topology generated by
the basis B, we know that for every z € X 3 a basis element
B, such that x € B, C U.

For each = € X, choose such a basis element B,.
(Note: For each x there may be lots of choices ... pick any
one to be B,.)

Lemma: U = J,cy Bs

Proof of Lemma. LHS C RHS:
Let z € U. Then v € B, CU. So z € |, x Be-

RHS C LHS: Let x € J,cx Bz. Then 2 € B, for some B,
in the union. And B, C U. Sox € U.
]

So, by the Lemma, U € T'. And so T C T".

T cCT:

Let V € T'. V is a union of basis elements. We want to
show V' € T. So, we want to show Vo € V 3 B, € B such
that x € B, C V. Solet x € V. Since V is a union of
basis elements, we know that x is in at least one of the basis
elements of which V' is a union. Choose one of them and
call it B,. Since V equals the union of the basis elements,
the union of all those basis elements is contained in V. B, is
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one of the sets in this union, so B, is contained in the union
which is contained in V. So we have found a B, such that
x € B, C V. Since our x was arbitrary, we have shown that
VeTl.

SoT =1T".

1.4 Example

Let B be the set of all open intervals in R.

Claim: B is a basis for a topology on R that is equivalent to
the standard topology on R.

Proof: 1.3 and 2.1 on page 49.

1.5 Result

Let (X,T") be a space and let B’ be a basis for T".

Claim: Be BB = B eT'.

Proof. Let B € B’. We want to show that B is open in X.
Let £ € B. B is a basis element. x € B. And B C B. So

we are done. B is open.
O

1.6 Result

Let (X, T) be a space. Let D be a collection of open sets in
(X, T) such that for any x € X and any neighborhood U of
x, there exists C' € D such that r € C C U.
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Claim: D is a basis for T

Proof. 1) Let x € X. We need to find an element of D that
contains . X?* C X. So 3C € D such that x € C' C X.

2) Let x € C1(Cy, with Cy, Cy € D. C; and Cy are open
(since D is a collection of open sets), so C () Cs is open. So
303 € D such that z € 03 - 01002.

So we have shown that D is a basis for a topology 7" on X.
Now we need to show that 7" = T. That is, the topology
generated by D is actually the same as T

TCT"

Let U € T. For each x € U there exists a basis element
C € Dsuchthatz € C C U. SoU €T’ (the topology
generated by D).

T CT:

Let U € T'. By 1.3, U is the union of elements of D. But
each element of D is open in (X,T), by definition. So the
union of these elements is also open in (X, T). So U, which

is the union of these elements, is also open in (X, 7).
0

1.7 Remark

Why do people get excited about a basis? 2.4 on page 80
and 2.5 on page 81 explain one reason . ..
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Chapter 2

Continuous Functions

2.1 Definition
Let f: X — Y. Let (X,T), (Y,T") be spaces. f is said
to be continuous when the inverse image of every open set

in Y is open in X. In other words, when V" C Y —
f—l(V)open c X.

2.2 Result

Let X be a space.

Claim: id : X — X is continuous.

Proof. Let UP" C X. id~' =id. So id " (U) =id(U) =U
0

which is open in X. So id is continuous.
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2.3 Example

Equip R with its standard topology.
0 forz<O0

Define f: R — R, f(x) = 1 forz>0

Claim: f is not continuous.

Proof. (—1,1)P** C R. f~'((—1,1)) = (—o0,0]. This is not
open in R (since 0 is not an interior point of (—o0,0]). So f
is not continuous. ]

2.4 Result

Let (X,T),(Y,T') be spaces. Let B’ be a basis for 7. Let
f:X—Y.

Claim: f is continuous < V B € B’, f~}(B)»*" C X.

Proof. = Suppose that f is continuous. Let B € B’. By 1.5
on page 76 B is open. Since f is continuous, f~!(B) is open
in X.

<= Suppose that VB € B’, f~1(B)*" C X. Let V" C Y.
Then by 1.3 on page 76 V is a union of basis elements. So
F7HV) = Y U,es fH(Ba)) is open. And that’s good.
Because now we have shown that f~!(V) is open and we are
done. O

2.5 Remark

People get excited about 2.4 because it makes for less work.
If we want to show f: X — Y is continuous, we no longer
have to show that the inverse image of every open set in Y
is open in X. If we have a basis for the topology on Y, then
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we only need to show that the inverse image of every basis
element is open in X. This is sometimes easier.

2.6 Example

Let f: R — R, f(z) = 2z.

Claim: f is continuous.

Proof. We make use of 2.4. The standard topology on R has
as a basis all the open intervals in R. Let (a,b) be an open

interval in R. f~'((a,b)) = (%,%), which is open in R. So
for every basis element in R, we have shown that f~! of that
basis element is open in R. By 2.4, f is continuous.

O

2.7 Result

Let f: X — Y.

Claim: f is continuous <= [U9*5d C Y = f~1(U)os C
X

Proof. = Suppose that f is continuous. Let U C Y.
Then Y — U is open in Y. And f~'(Y — U) is open in X.
We need a lemma . ..

Lemma: f~Y Y —=U) = f~4Y) - f~YU).

Proof of Lemma. RHS C LHS:

Let z € f~1(Y)— f~Y(U). Then f(z) € Y —U. So f(z) €Y
and f(z) ¢ U. Sox € f7YY) and z ¢ f~(U). So
z € fTHY) = fHU).
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LHS C RHS:

Letxef Yy) — £~
W), So f(z) € Y
Sox € f7YY — U).

WU

). Then z € f~4(Y) and z ¢
and f(z) ¢ U. So f(z) € Y —U.

O

(Y =U)=fY)- fY(U), by the Lemma.

And f1(Y) = X.

So /(Y 1) = X — (D).

We aleady showed that f~}(Y —U) is open in X. So f~}(U)
is closed in X.

& Suppose Uosd C Y = f~1(U)sed ¢ X. Let VP C
Y. Then Y — Velosed ¢ v, =}y — V)dosed < X and

Y =V) = 1Y) = f7H(V) = X — f71(V), applying
the above Lemma again. So f~!(V) is open in X. So f is
continuous. I

2.8 Result

Let f : X — Y be continuous and g : Y — Z be continu-
ous. Define h =go f.

Clatm: h : X — Z is continuous.

Proof. Let U°" C Z. Then g~'(U) is open in Y. For
convenience of notation, let V = ¢g~'(U). Since f is contin-
uous, f~1(V)isopenin X. b=t = f~tog™t So h™}(U) =
g N U)) = f~H(V)r» C X. So h is continuous. O

2.9 Result

Let X be a space.
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Claim: X has the discrete topology <= V spaces Y every
function f : X — Y is continuous.

Proof. = Suppose that X has the discrete topology. Let Y
be any space and let f: X — Y. We want to show that f
is continuous. So, choose V¥ C Y. f~1(V) C X. Since X
has the discrete topology, f~1(V) is open. So f is continuous.

<= Suppose that V spaces Y every function f: X — Y is
continuous. We want to show that X has the discrete topol-
ogy. So we want to show that every subset of X is open.
Suppose 3U C X with U not open in X. Let Y = {0,1}.
Let the open sets in Y be ¢,Y, and {0}.

0 forxzelU

1 forre X —-U

{0} is open in Y and ¢g~*({0}) = U, which is not open in X.
So g is not continuous. But every function from X to any
space Y is continuous. So our assumption that 3U C X with
U not open in X has led to a contradiction. So we conclude
that every subset of X is open, and thus X has the discrete
topology. O

Define g: X — Y, g(x) =

2.10 Problem

Let (Y,T) be a space. Show Y has the indiscrete topology
<= V spaces X every function f: X — Y is continuous.

2.11 Result

Let X = A|J B, with A and B closedin X. Let f : A — Y,
and g : B — Y be continuous with f(x) = g(x)Vx € A B.
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f(z) forze A
g(x) forx e B

Define h: X — Y, h( ):{

Claim: h is continuous.

Proof. h is well-defined:

If r € AN B, h(z) = f(z) and h(z) = g(z).

But by assumption, f(x) = g(z). If follows that h is well-
defined.

h is continuous:

Let C¢s¢d C Y. Suppose we knew that f~1(C)Jg *(C) =
h=1(C). Since f, g continuous, f~1(C) and ¢g~!(C) would
be closed, by 2.7. By 6.1 on page 69 we would then have
h=1(C) is closed. And then, applying 2.7 again (in the op-
posite direction), we would have h is continuous.

Lemma: f~(C)Ug™'(C) = h7(C)

Proof of Lemma. Let xz € f~1(C)Jg(O).
Then z € f~1(C) or z € g7(O).

Case 1: z € f~1(C)

Then f(z) € C, z € A. So f(x) = h(z). So h(z) € C. That
is, z € h™1(C).

Case 2: z € g~ }(C)

Then g(z) € C, x € B. So h(x) = g(x). So h(z) € C. That
is z € h™1(C).

So fTHC)Ug™H(C) € h7H(C)

Let z € h™}(C). So h(z) € C. Since z € X = A B,
r € Aorxz € B,and we have h(z) = f(z) or h(x) = g(z).

Sox e f~YC) orz e gl (C).
]

As discussed above, we are done. ]
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2.12 Result

Let AC X. Let f: X — Y be continuous.
Let g: A—Y, g(x) = f(x)Vz € A
(We call g the restriction of f to the subspace A)

Claim: g is continuous.
Proof. Let UP** C Y. Then f~(U) is open in X, since
f is continuous. It would be nice if g~ (U) = A f~H(U).

Since A f~1(U) is open in the subspace A, we would have
g 1 (U)r* c A. And we would be done.

Lemma: g~ (U) = AN fHU).
Proof of Lemma. Let © € ¢~ *(U). Then g(z) € U. And

since g(z) = f(z), f(x) € U. Sox € f~*(U). Andx € A
(since g(z) is defined). So x € AN f~1(U).

Let v € AN\ fY(U). Then z € A and z € f~*(U). So

f(z) € U. But f(z) = g(z). (Note that we know g(x) is
defined, since x € A.) So g(z) € U. So z € g~'(U). O

As discussed above, we are done. O

2.13 Problem

Equip X and Y with the cofinite topology. Find a continuous
f:X — Y and a not continuous g : X — Y.

2.14 Problem

Let X be a space, A C X, A have the subspace topology,
f:A— X, f(zr)=2xVz e A We call f the inclusion of
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A into X. Show f is continuous.
(Hint: Let U°?" C X. Show f~3(U)=U(NA.)

2.15 Problem

Let X, Y be spaces. Let t € Y. Let f : X — Y,
f(z) = tVxz e X. (That is, let f be the constant function
that sends all elements of X to ¢.) Show f is continuous.

Chapter 3

Homeomorphisms

3.1 Definition

Let f : A — B. f is said to be a homeomorphism be-
tween A and B if f is continuous, f~! is continuous and f
is bijective. If such an f exists, we say A and B are home-
omorphic.

3.2 Result
Let (X, T) be a space.

Claim: (X,T') is homeomorphic to itself.

Proof. id : X — X is continuous by 2.2 on page 79.

id™' = id, so id~! is continuous. And the identity is a bi-
jection. So we have constructed a homeomorphism between
X and itself. So (X,T) is homeomorphic to itself. O
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3.3 Result

Let X = (0,1). Let the open intervals in R contained in
(0,1) be a basis for a topology T" on X.

Let Y = (a,b) where a,b € R and a < b. Let the open inter-
vals in R contained in (a, b) be a basis for a topology 7" on Y.

Claim: (X,T) is homeomorphic to (Y, T")

Proof. Let f: X — Y, f(x) = (1 —x)a+ z(b)
f is well-defined.

fis 1-1:

Suppose that f(x) = f(y), for some z € X,y € Y.
Then (1 —z)a+ z(b) = (1 —y)a+ y(b).

So (1 —z)=(1=y))a=(y—x)b

So (y —x)a = (y — x)b.

But a does not equal b. Soy —xz =0. Soz =y.

f is onto:

Let y € Y. Let t = =2 y = f(t) (check this). We need to
check though that ¢ is defined and t € X.

t is defined since a # b.

yeY,y<b Sot<1.

And since y > aand b > a,t > 0. Sot € X. So f is onto.

f is continuous:
Let (c,d) be a basis element for T". f~(c,d) = (&2, 4=2),
which is open in X. (Why?) So f is continuous.

f~1 continuous:

Let (¢, d) be a basis element for topology on X.

Then f((c,d)) = ((1 — ¢)a+ be, (1 — d)a + bd) which is open
in Y (Why?).

Part III: Homeomorphisms

So f~!is continuous.

3.4 Result

Claim: Homeomorphism is an equivalence relation.
Proof. 1) X is homeomorphic to X by 3.2

2) Suppose X is homeomorphic to Y. Then 3 a home-
omorphism f : X — Y. We need a homeomorphism
g:Y — X. Let’s try f~1.

Lemma 1: f~':Y — X is a homeomorphism.
Proof of Lemma 1. a) f~' is well-defined:

Let y € Y. 3 a unique = € X such that f(z) =y, since [ is
bijective. f~(y) = x. So f~! is well-defined.

b) £ s 1-1:
Suppose f~'(z) = f~'(y). Then, since f is well-defined,
T =y.

c) f~! is onto:

Let x € X. Then, since f is well-defined, 3y € Y such that
fl@)=y. f~(y) = f7(f(x)) = =. So f~! is onto.

d) (f~Y)~! = f is continuous since f is a homeomorphism.

e) f~! is continuous, since f is a homeomorphism.

So f~!is a homeomorphism.
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So Y is homeomorphic to X and the homeomorphism rela-
tion is symmetric.

3) Suppose X is homeomorphic to Y and Y is homeomorphic
to Z. Then there are homeomorphisms f : X — Y, and
g:Y — Z. We want to find a homeomorphism from X to
Z. Let’s try go f.

Lemma 2: Let h=go f. h: X — Z is a homeomorphism.

Proof of Lemma 2. a) h is well-defined:
f(z) = y for a unique y € Y and g(y) = z for a unique
z€Z. h(x) =g(f(z)) = g(y) = z. So h is well-defined.

b) h is onto:

Let z € Z. 3y € Y such that g(y) = z, since g is onto.
Jx € X such that f(z) = y, since f is onto. And h(x) =
g(f(x)) = z. So h is onto.

c) his 1-1:
Suppose h(a) = h(b) for some a,b € X. Then g(f(a)) =
g(f(b)). Since g is 1-1, f(a) = f(b). Since f is 1-1, a = b.
So his 1-1.

d) h is continuous:
2.8 on page 82

e) h~! is continuous: 3.24 on page 35 and 2.8 on page 82 [

So h is a homeomorphism and the homeomorphism relation

1s transitive.
O
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3.5 Problem

Let {0,1} and {0, 1,2} be equipped with some topologies.
Show there is no homeomorphism A : {0,1} — {0, 1, 2}.

3.6 Problem

Let A, B be finite sets. Let A have n elements, and B have m
elements, where n # m. Equip A and B with any topologies.
Show A is not homeomorphic to B.

3.7 Problem

Let C be a finite set, and let D be an infinite set. Equip C
and D with any topologies. Show C'is not homeomorphic to
D.

3.8 Problem

Let E,F be sets. Suppose there does not exist bijective
f:+E — F. Equip E and F with any topologies. Show F
is not homeomorphic to F'.

3.9 Definition

Suppose a space can have a certain property.

We say that a property is a topological property when
homeomorphic spaces must either both have the property or
both not have the property.
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Suppose we are interested in showing that a space X is not
homeomorphic with Y. One approach is to show that there
is no function from X to Y that is a homeomorphism. Some-
times this is easy. Sometimes it is hard.

Another approach is to show that there is some topological
property that X has and Y does not have. This is sometimes
easier.

Some topological properties will be introduced in the next
part.

Part IV

More Properties




Chapter 1

Retractions

1.1 Definition

Let AC X. Let f: X — A. We call f a retraction of X
onto A if f is continuous and f(a) =aVa € A. A is said to
be a retract of X if such an f exists.

1.2 Result

Let X be a space. Let A be non-empty, A C X. Equip A
with the discrete topology.

Claim: A is a retract of X.

Proof. Choose any a; € A.
x forzeA

a; forxe X —A

By 2.11 on page 83 r is continuous. So we’re done.

Define r : X — A, r(z) =
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1.3 Result

Let A be a retract of X, and h : X — Y be a homeomor-
phism.

Claim: h(A) is a retract of Y.

Proof. Since A is a retract of X, we have a continuous
r: X — A r(a) =aVae€ A Toshow h(a) is a retract
of Y, we need to construct a retraction of Y onto h(A).

Let f=horoh™. f:Y — h(A). f is the composition of
continuous functions, thus continuous.

Let ¢ € h(A). Then g = h(t) for some t € A.

fla) = f(h(t)) = h(r(h7'(h(t)))) = h(r(t)). Since ris a
retraction of X onto A and ¢t € A, we have r(t) = t. So
flg) = f(h()) = h(t) = q.

So h(A) is a retract of Y, with retraction f. O

1.4 Result

Let BC AC X.
Let f: X — Aand g : A — B be retractions. Let
h:X — B,h=gof.

Claim: h is a retraction of X onto B.

Proof. Since f and g are continuous, we know h is continu-
ous. Let b€ B C A. Then h(b) = g(f(b)). Since b € A, we
have f(b) = b. So h(b) = g(b). But, since b € B, g(b) = b.
So h(b) = b.

So h is a retraction of X onto B, and B is a retract of X. O
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1.5 Problem

Let A C X, let X be a space. Let f : X — A be a
retraction. Show f is onto.

1.6 Problem

Let (0,1) C R be equipped with any topology. Let {0} have
the discrete topology. Show {0} is not a retract of (0,1)

What happens if we only require {0} be equipped with some
topology (instead of specifically the discrete topology)?
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Chapter 2

Fixed Point Property

2.1 Definition

Let f: A— A. When f(a) = a, we say a is a fixed point
of f.

2.2 Definition

Let X be a space. X is said to have the fixed-point prop-
erty, when every continuous function f : X — X has a

fixed point. This will also sometimes be worded as ‘X is
FPP’.

2.3 Result
Claim: The fixed point property is a topological property.

Proof. Let X be FPP. Let h : X — Y be a homeomor-
phism. We want to show that Y is FPP. So,let g: Y — YV
be continuous. We want to show that g has a fixed point.
Let j=hlogoh. j: X — X. jis continuous by 2.8 on
page 82. Since X is FPP, 3¢ € X such that j(t) = t.

99




100 Topology and the Language of Mathematics

() = Y (g(h(t)). So h(j(t)) = h(h'(g(h(t)) = g(h(t)).
But j(t) = t, so we have h(t) = g(h(t)). So h(t) is a fixed
point of g. So Y is FPP. O

2.4 Example

Let X = {z}. Equip X with the discrete topology.

Claim: X is FPP.

Proof. Let f : X — X be continuous. Since f is well-
defined, f(z) = z. (Note that there is precisely one function
from X to X, and that function is continuous.)

U

2.5 Example

Let a,b € X, a # b, X = {a,b}. Let X have the discrete
topology.

Claim: X is not FPP.

Proof. Let f: X — X, f(a) =0, f(b) = a. f is continuous
and has no fixed point. O

2.6 Result

Claim: R is not FPP.

Proof. Let f : R — R, f(z) = x4+ 1. f is continuous and
has no fixed point. O
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2.7 Result

Let 7 : X — A be a retraction, with X FPP.

Claim: A is FPP.

Proof. Let f: A — A be continuous.

Let h: A— X, h(a) =aVa € A.

Let t = ho for. his continuous by 2.14 on page 86.

Sot: X — X is continuous by 2.8 on page 82.

Since X is FPP, ¢ has a fixed point, z. t(z) = h(f(r(z))) = =.
But A(f(r(z))) = f(r(z)) (why?).

It would be nice if x were in A. Then r(z) = z, and

f(r(x)) = f(z) ==
And we will have shown that A is FPP.

Lemma: x € A.

Proof of Lemma. We know t(z) € A, since h(A) C A. But
t(z) = x. So x € A.

2.8 Remark

We still haven’t found a non-trivial space that has the fixed-
point property. In the next chapter, we will introduce the
topological property of connectedness. Then we will use this
idea to find some non-trivial spaces that have the fixed point

property.
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Chapter 3

Connectedness

3.1 Definition

Let A,B C X. Then A and B are said to be disjoint when
AN B = ¢.

3.2 Definition

Let X be a space and let A,B C X. A and B form a
separation of X when X = A(J B, and A and B are open,
disjoint, and non-empty.

3.3 Definition

Let X be a space. Then X is connected when there is no
separation of X.

3.4 Result

Let X be a space.
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Claim: X is connected <= the only sets in X that are both
open and closed are ¢ and X.

Proof. = Let X be connected. Let U C X, and let U be
open and closed. Then X = U |J(X —U). Since U is closed,
X — U is open. We have X = U|J(X — U). Both U and
X — U are open. And U and X — U are disjoint. Since X is
connected, either U or X — U must be empty. So U = ¢ or
U=X.

<= Let the only sets in X that are both open and closed be
¢ and X. Suppose U and V form a separation of X. Then
U = X — V, which is open. So U is closed (and open). So
U=¢orX.

Case 1: U = ¢
This cannot happen, since U is non-empty, by definition of
a separation.

Case 2: U =X
Then V' = ¢, which can also not happen, by definition of a
separation.

So our assumption that there is a separation of X is false.
So X is connnected. O

3.5 Example

Let X = (0,1)U[2,3] € R. Equip X with the subspace
topology (that is, the topology in 4.12 on page 62).

Claim: X is not connected.

Proof. By 4.12 on page 62 and 3.4
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3.6 Result

Let f: X — Y be continuous. Let Unnected c X

Claim: f(U)mected C Y,

Proof. Suppose that f(U) is not connected. Then 3 A, B
that form a separation of f(U). It would be nice if f~'(A)
and f~!(B) formed a separation of U. That would contradict
the fact that U is connected. That would mean our assump-
tion that f(U) is not connected was false. That would tell
us f(U)connected cY.

Lemma: f~'(A) and f~!(B) form a separation of U.

Proof of Lemma. non-empty:
Since A and B are non-empty and subsets of f(U), f~(A)
and f~!(B) are non-empty.

disjoint:

Suppose z € f~1(A) () f1(DB).

Then f(x) € A and f(x) € B. But A and B are disjoint.
So our assumption that there is an z € f~'(A) () f~}(B) is

false. So f~H(A) N[ (B) = ¢.
open:
A and B are open in Y (since they form a separation of U).

Since f is continuous, f~'(A) and f~(B) are open in X.
0

So f(U)commected Y and we are done. O

3.7 Result

Claim: Connectedness is a topological property.
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Proof. Let X be homeomorphic to Y by a homeomorphism
f. Let X be connnected. We want to show that Y is con-
nected.

Suppose that Y is not connected. Then 3 U C Y such that
U# ¢, U #Y,and U is open and closed in Y. f~1(U)
is open and closed in X (since f is continuous), non-empty
(since f is onto and U # ¢), and not X (since f is onto
and U # Y). So X is not connected. But X is connected.
So our assumption that Y is not connected has led to a
contradiction. So Y is connected. O

3.8 Remark

Equip R with the standard topology. It is connected. Let A
be any interval in R, and equip it with the subspace topology.
Then A is connected. We do not prove either of these results,
but we will use them. Many topology books contain proofs
of these results, including [9].

3.9 Result

Let Q C R have the subspace topology.

Claim: Q is not connected.

Proof. Q((—o0,v2) is open in Q. Q[(v/2,00) is open
in Q. Let U = Q(—00,v?2) and let V = QN (2, 0).
UV =Q, by the Lemma in 3.15 on page 31. U and V are
disjoint. U and V are open. So we have found a separation
of Q. So Q is not connected. O
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3.10 Result

Let X be a space, let {0, 1} have the discrete topology.

Claim: X is connected <= f : X — {0, 1} being continu-
ous implies f is constant.

Proof. = Let X be connected. Let f : X — {0,1} be
continuous. We want to show that f must be constant. Sup-
pose f is not constant. Then Jz,y € X such that f(z) =
0, f(y)=1. f71({0}) # ¢, fF1({1}) # ¢. Since f is continu-
ous, f~1({0}) and f~1({1}) are open in X. They are also dis-
joint, since f is a function. Also, X = f~1({0}) U f({1}).
So f71({0}) U fH{1})) forms a separation of X. But X is
connected. So our assumption that f is not constant has led
to a contradiction. So f is constant.

<= Suppose every continuous f : X — {0,1} is constant.
We want to show that X is connected. Suppose not. Then
X =UV, a separation.

0 forzelU

1 forzeV

F74({0}) = U which is open. f~'({1}) = V which is open.
So f is continuous. So f is constant. But f is not constant.
So our assumption that X is not connected has led to a
contradiction. So X is connected. O

Define f: X — {0,1}, f(z) =

3.11 Result

Let X be FPP.

Claim: X is connected.

Proof. Suppose not. Then X = U]V, a separation. U and
V' are closed and disjoint. Ju € U,v € V.
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v forxzeU

u forzeV

By 2.11 on page 83 f is continuous. That’s bad, because f
has no fixed point. And X is FPP. So our assumption that
X is not connected was false. So X is connected. O

Define f: X — X, f(x) =

3.12 Definition

Let X be a space. Let x € X. We call the union of all
connected subsets of X that contain x the component of x
in X.

3.13 Problem

Show ¢ is connected.

3.14 Problem

Let X be a space, let € X, and give {x} C X the subspace
topology. Show {z} is connected.

3.15 Problem

Let X have the indiscrete topology. Show X is connected.

3.16 Problem

Let X ={0,1, %, %, ...}. Give X the topology it inherits as

a subspace of R. Show X is not connected.
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3.17 Problem

Let X have the discrete topology.
Show X is connected <= X = ¢ or X has precisely one
element.

3.18 Problem

Equip a finite set X with the cofinite topology. Show X is
connected.

3.19 Problem

Let U be a finite subset of R. Equip R with its standard
topology and U with the subspace topology. Show U is not
connected.

3.20 Remark

Let a,b € R,a <b. Let f : [a,b] — R be continuous. Then
f takes on every value between f(a) and f(b). That is, if
f(a) < f(b), then for every y where f(a) <y < f(b) Iz €
[a,b] so that f(x) = y. And if f(b) < f(a), then for every
y where f(a) > y > f(b) 3z € [a,b] so that f(z) = y.
Consider the case where f(a) = f(b) ... why is the condition
trivial in that case? The result just described is a version of
the Intermediate Value Theorem. It is true, and we will not
prove it. See [9] for a proof.

3.21 Result

Suppose you know that [0, 1] C R is connected, and you know
the Intermediate Value Theorem is true (both are true, but
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we have proved neither).

Claim: [0,1] is FPP.

Proof. Let f : [0,1] — [0,1] be continuous. We want to
show f has a fixed point.

Case 1: f(0)=0or f(1)=1
Then f has a fixed point.

Case 2: f(0) #0and f(1) #1

Then f(0) > 0 and f(1) < 1. Define g : [0,1] — R,
g(z) =z — f().

g is continuous. Note that ¢g(0) = 0 — f(0) < 0 and
g(1) = 1 — f(1) > 0. By the Intermediate Value Theorem,
3¢ € [0,1] such that g(¢) = 0. But g(t) =t — f(t). So we
have a t so that ¢ = f(t), and that ¢ is a fixed point of f.
So, given an arbitrary continuous f : [0, 1] — [0, 1], we have
shown that f has a fixed point. So [0, 1] has the fixed point
property. U

Part V

More Examples




Chapter 1

Subspace Topology

1.1 Result

Let (X,T") be a topological space and let A C X.
Let T={U; U =V[)A for some V € T'}

Claim: (A,T) is a space.

Proof. 1) ¢ € T'. ¢(VA=0¢. Sop € T.
XeT X(NA=A SoAeT.

2) Suppose you have a collection {Ug } ey, UP™ C TV € J.
Each U, =V, () A for some V, € T".

UaeJ Ua = UaeJ(Va ﬂ A) = (UaeJ Va) ﬂ A (Why?)

Since each V,, is open in X, |J__; V4 is open in X.

S0 Jaes Ua is open in A.

aeJ

3) Let Uy,Us € T. Then U; = Vi A for some V; € T,
And Uy = V5 () A for some V; € T".

So Ui Uz = (ViNA)N(VaN4) = (Vi Va) N A.

Since T" is a topology, Vi1V € T".

So U; (\Us is open in A.
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1.2 Definition

Let (X,T") be a space. Let A C T, and let T be defined as
in 1.1. Then we call T' the subspace topology on A. We
say A inherits this topology as a subset of X.

1.3 Example

Let (0,1) = A C R. Let R have the standard topology and
give A the subspace topology. Let (0, %] =B.

Claim: B is closed in A.

Proof. We want to show that A — B is open in A.
A — B = (i1).

2

To show this is open in A we need to show that (3,1) =
UNA for some UP" C R. Let U = (3,1). U C R, and
UNA=(31).

So A — Bisopenin A. So B is closed in A.

1.4 Problem

Let (0,1) € R. Let R have the standard topology, and
let (0,1) have the subspace topology. Show [, 3] is closed
in (0,1).

Proof. (071)_ [i%] (07%) U(%>1)

Use this to show [+, 2] is closed in (0, 1).
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1.5 Remark

Note that 1.3 and 1.4 tell us that a closed set in the subspace
topology may or may not be closed in the big space.

1.6 Problem

Let A = [0,1]. Consider A as a subspace of R with the

standard topology. Show (0, %] is not closed in A.

1.7 Result

Let R have the standard topology, Let T be the subspace
topology N inherits from R. Let 7" be the discrete topology
on N.

Claim: T =T’

Proof. T C T":
In the discrete topology on N, every subset of N is open. So
if U € T then U C N and thus U € T".

TcT:

Let U € T'. Suppose we knew that {z} € TVz € N.
Then we would know that U would have to be open (since
U=U,cs{z}). Let z € N. Then {z} = (z — 1,2+ 3) N
So {zx} € T. By the above comment, 7" C T and we are
done. O

1.8 Problem

Let R have the standard topology, Z C R. Give Z the sub-
space topology. What familiar topology is this? (Hint: it is
similar to 1.7)
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1.9 Problem

Let X have the discrete topology. Let A C X have the
subspace topology, T'. Show T is the same as the discrete
topology on A.

1.10 Problem

Let X have the indiscrete topology. Let A C X have the
subspace topology, T. Show T is the same as the indiscrete
topology on A.

1.11 Problem

Let R have the standard topology, [0,1] C R the subspace
topology. Let a,b € R, 0 < a < b < 1. Show [0,a) and (b, 1]
are open in [0, 1].

1.12 Result

Let R have the standard topology. Let [0,1] C R have the
subspace topology.

Claim: [0, 1] is a retract of R.

0 forx<0
Proof. Define f : R — [0,1], f(z) =41 forx>1

xz for z €[0,1]
f is well-defined.

We need to show f is continuous.
Let B={U C [0,1]; U =[0,a) or U = (b,1] or U = (a,b)}
fora,b € Rand 0 <a < b< 1. B is a basis for the topology
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on [0,1] (Why?). Let By € B. Then f~!(B;) = (—00,a) or
JYBy) = (a,0) or f7Y(By) = (a,b). So f~'(By) is open in
R for every basis element B;. So f is continuous. So [0, 1] is
a retract of R. O

1.13 Problem

Let R have the standard topology, and let [0,1) C R have
the subspace topology. Show [0, 1) is not FPP.

1.14 Problem

1) Is the subspace of an FPP space also FPP?
2) Examine subspaces of retracts.
3) Examine subspaces of a space with the cofinite topology.

1.15 Problem

Let X be a space, let A C X have the subspace topology.
Let C C A. Show C¢os¢d ¢ A — FVelosed - X such that
C=VNA.

1.16 Remark

Consider [0, 1] as a subspace of R with the standard topology.
Try to find a closed set in [0, 1] that is not closed in R.
(Hint: Dont try for too long.)
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1.17 Problem

Let X be a space. Suppose A C B C X, and B is equipped
with the subspace topology. Suppose A is closed in B and B
is closed in X. Show A is closed in X. (Hint: 1.15 is useful)

1.18 Remark

Why does this explain the hint in 1.167

Chapter 2

Lower Limit Topology,
K-Topology

2.1 Result
Let B = {[a,b); a,b € R, and a < b}

Claim: B is a basis for a topology on R .

Proof. 1) Let z € R. x € [z,z+ 1) € B

2) Let * € By, By. Then By = [a1,b;) and By = [ag, by)
for some ay, as, by, bo € R with a; < by and ay < bs.
Let a = max{ay,az}. Let b = min{by,bs}. Let By = [a,b).
Bs € B, and x € B3 C B[ Bo. O

2.2 Definition

When we equip R with the the topology generated by the
basis B from 2.1, R is said to be equipped with the lower
limit topology .
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2.3 Result

Let K ={1; n e N}.

Let B={U; U = (a,b) or U = (a,b) — K for some a,b € R
with a < b}

Claim: B is a basis for a topology on R.

Proof. 1) Let z € R. Thenz € (x — 1,z + 1) € B.
2) LetlL‘EBlnt,Bl,BQEB.

Let’s call basis sets of the form (a,b) Type 1, and let’s call
basis sets of the form (a,b) — K Type 2.

Case 1: By, By are both Type 1.

Then By = (a1,b1), Ba = (a2,by). Let a = max{a,as} and
let b = min{by,b2}. Let By = (a,b). Then B3 € B, and
r € By C By nt

Case 2: By, By are both Type 2.

Then B1 = (al,bl) - K, Bg = (ag,bz) — K. Let a =
max{ai,as} and let b = min{by,bs}. Let B3 = (a,b) — K.
Then B3 € B, and x € B3 C BlﬂBQ.

Case 3: By is Type 1, and B, is Type 2.

Then By = (ay,b1), By = (a2,b2) — K. Let a = max{ay,as}

and let b = min{by,by}. Let By = (a,b) — K. Then B; € B,
andeBchlﬂBg. O

Part V: More Examples

2.4 Definition

When we equip R with the topology generated by the basis
B in 2.3, we say R is equipped with the K-topology.

2.5 Problem

Equip R with the lower limit topology. Let a,b € R, a < b.
Show (a, b) is open in R.
(Hint: Show that (a,b) = U, ([, b))

2.6 Problem

Equip R with the lower limit topology. Let a € R. Show
(—00,a) is both open and closed in R.

2.7 Problem

Equip R with the lower limit topology. Let a € R. Show
[a,00) is both open and closed in R.

2.8 Problem

Equip R with the lower limit topology. Let a € R. Show
(a, 00) is both open and closed in R.

2.9 Problem

Let T be the lower limit topology on R. Show (R, T") is not
connected.
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2.10 Problem

Equip R with the lower limit topology. Let a,b € R, a < b.
Show [a, b] is not open.

2.11 Result

Let T be the standard topology on R, and let 77 be the K
topology.

Clatm: T T’

Proof. Let U € T. Recall that a basis for T is the set of all
open intervals in R. So U is a union of open intervals in R.
So, by 2.4, U € T" (Why?). O

Chapter 3

Sierpinski Space

3.1 Definition

Let X ={0,1}. Let "= {¢, {0,1},{0}}. We call (X,T) the
Sierpinski space.

3.2 Example

Let X be the Sierpinski space. Let Y be a set with precisely
two elements x and y. Let the open sets in Y be ¢,Y, and

{}.

Claim: X is homeomorphic to Y.

Proof. To show X is homeomorphic to Y, we will construct a
homeomorphism f: X — Y. Let f(0) =z, and f(1) = y.
We show that this defines our desired homeomorphism.

f is well-defined and f is bijective.

f is continuous:

There are three open sets in Y. We’ll take the inverse image
of each and make sure it is open.
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f~Y(¢) = ¢, which is open in X.
f~YY) = X, which is open in X.
f~'({z}) = {0}, which is open in X.
So f is continuous.

f~1!is continuous:
Since (f~1)~! = f, we will just check that the image of each
open set in X under f is open in Y.

f(¢) = ¢ which is open in Y.
f(X) =Y which is open in Y.
f({0}) = {z} which is open in Y.
So f~1 is continuous.

So we are done.

3.3 Result

Claim: The Sierpinski space is connected.

Proof. Let X be the Sierpinski space. Suppose X is not
connected. Then 3 U,V that form a separation of X. Since
both U and V' are open, non-empty, and disjoint, U or V'
has to equal {0}. (Why?) Without loss of generality, say
U = {0}. Since X = U|JV and U and V are disjoint,
V must equal {1}. And V is open, by assumption. But
V = {1} is not open. So our assumption that X is not
connected has led to a contradiction. So X is connected. [

3.4 Problem

Let Y be the Sierpinski space. Both Y and R are connected.
Note that this does not tell us that Y is homeomorphic to R.
Their both being connected is not helpful in deciding whether
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they are homeomorphic or not. We do however know that Y
is not homeomorphic to R. How?

3.5 Problem

Let X be the Sierpinski Space. What are all the closed sets
of X7 What are all the open sets of X7

3.6 Result

Let X be the Sierpinski space.

Claim: X is FPP.

Proof. Let f : X — X be continuous. Since {0} is open,

F71({0}) must be open.

Case 1: f71({0}) =X

Then f(0) =0, and f has fixed point 0.

Case 2: f~1({0}) = ¢

Then f(1) = f(0) = 1. And f has fixed point, 1.

Case 3: f~1({0}) = {0}

Then f(0) =0, and f has fixed point 0. So X is FPP.

O
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Chapter 4

Path Connected

4.1 Definition

Let X be a space. Let [0, 1] C R have the subspace topology.
Let a,b € X. We say f is a path in X from a to b when
f:]0,1] — X, f is continuous, f(0) = a, and f(1) = b.
4.2 Example

Let f:[0,1] — R, f(z) = (1 — x)(a) + x(b). Let a,b € R.

Claim: f is a path from a to b.

Proof. f is continuous. f(0) =a. f(1) =b.

4.3 Definition

Let X be a space. We say X is path connected if the
following is true:
Vax,y € X dapathin X from z to y.
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4.4 Result
Let X =¢,Y = {y}.

Claim: X and Y are both path connected.

Proof. X and Y satisfy path conectedness vacuously. O

4.5 Result

Claim: R is path connected.

Proof. 4.2

4.6 Result

Claim: The Sierpinski Space is path connected.

Proof. X = {0,1}. Let T = {¢,{0,1},{0}}. Let z,y €
X, x #y. Then, without loss of generality, we can say z = 0
and y = 1. We want to construct a path from z to y. So we
want a function f : [0,1] — X that is continuous such that
f(0) = =, f(1) = y. Let f(0) = 0,f(1) =1,f(t) =0Vt e
(0,1). We check that f is continuous:

= ¢, which is open in [0, 1].
= [0, 1], which is open in [0, 1].

{0}) 0,1) = (=3

’ 27
1) X is open in [0,

1) X. Since (—2%,1) is open in R,
1

J

So we have shown that f is continuous.
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So we have shown that X (which is the Sierpinski Space) is
path connected.
U

4.7 Result

Let X be path connected and f: X — Y be a homeomor-
phism.

Claim: Y is path connected.

Proof. Let x,y € Y,z # y. Since f is well-defined, f~!(x) #
f~(y). So we have a path g in X from f~(z) to f~!(y).
That is g : [0,1] — X, g is continuous, g(0) = f~*(z) and

= f~Y(y). Let’s look at fog:[0,1] — Y. It would be
nice if f o g was a path from z to y.

Lemma: f o g is a path from x to y.

Proof of Lemma: f o g is continuous, by 2.8 on page 82.
(f 2 9)(0) = f(g(0)) = f(f~H(z)) ==
(feog)1)=flg(1)) = f(f7(¥) =y

By the Lemma, we are done.

4.8 Result

Claim: Path connectedness is a topological property

Proof. 4.7
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4.9 Result

Let X be path connected.

Clatm: X is connected.

Proof. Let z,y € X. We show = and y are in the same com-
ponent of X. If this is true, then we have shown that there
is only one component of X. That is, X is connected.

Since X is path connected, we can choose a path f from
ztoy, f : [0,1] — X. Since [0, 1] is connected, f([0,1])
is connected, by 3.6 on page 105. So x and y (which are in
the image of f) lie in the same component of z. Since = and
y were arbitrary, X is connected. ]

4.10 Result

Let X have the indiscrete topology.

Claim: X is path connected.

Proof. Let x,y € X. Define f: [0,1] — X, f(0) =z, f(t) =
yVt e (0,1]. By 2.10 on page 83, f is continuous. f is a
path from x to y. So X is path connnected. O

Part VI

Separation axioms
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1

1.1 Definition

Let X be a space. We say X is T3 (read ‘tee - one’) if {z} is
closed in X for every x € X.

1.2 Example

Let R have the standard topology.
Claim: R is Tj.

Proof. 4.6 on page 61

1.3 Example
Let X be a space, with the cofinite topology.
Claim: X is 1.

Proof. 4.4 on page 60
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1.4 Result

Let X be a space.

Claim: X is T <= V distinct a,b € X3 U,, U, (neighbor-
hoods of a and b respectively) such that a ¢ U, and b ¢ U,,.

Proof. = Suppose X is T}. Let a,b € X,a # b. {a},{b}
are closed, since X is T7. Let U, = X —{b} and U, = X —{a}.
a €U, and b € U,. U, and U, are open. b & U,,a ¢ U,.

<= Suppose V distinct a,b € X 3 U,, U, (neighborhoods of
a and b respecctively) such that a ¢ U, and b ¢ U,. Let
z € X. We want to show {z} is closed. So we want to show
that X — {x} is open. Let y € X — {z}. If we can show y is
an interior point of X —{x}, that would be nice. Then every
point of X — {z} is an interior point of X — {z}, and thus
X — {z} would be open by 5.5 on page 66. And {z} would
be closed. And we would be done.

Lemma: y is an interior point of X — {z}

Proof of Lemma. Since  # y, we have U, and U, neigh-
borhoods of z and y with ¢ U,, y ¢ U,. Since z ¢ U,
U, C X —{z}. So we have a neighborhood of y that is con-
tained in X — {x}. So y is an interior point of X — {z}.

U

So we are done.
O

1.5 Result

Let T be the lower limit topology on R.

Claim: (R,T) is 1.
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Proof. Let z € R. We want to show {x} is closed in R. We
will show R — {z} is open. R — {z} = (—o0, ) J(x, ).
By 2.6 on page 121 and 2.8 on page 121 R — {z} is open. So
{z} is closed, and (R, T) is T7. O

1.6 Result

Let X be T7. Let A C X, A equipped with the subspace
topology.

Claim: Ais Tj.

Proof. Let a € A. {a} is closed in X. So X — {a} is open
in X. So AN(X — {a}) is open in A. But AN(X — {a}) =
A —{a} (Why?). So A— {a} is open in A. So {a} is closed
in A. So Ais T;. O
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Chapter 2

I5 - Hausdorft Spaces

2.1 Definition

Let X be a space. We say X is Ty (or Hausdorff) when the
following is true: z,y € X and x # y = 3 disjoint open
sets U and V such that x € U and y € V.

2.2 Result

Let X be TQ.

Claim: X is 1.

Proof. Case 1: X = {z}.
Then {z} = X is closed. So X is 7.

Case 2: X has more than one element.

Let z € X. We want to show that {z} is closed. So we want
to show X —{z} is open. Let y € X —{z}. Since X is T5, we
know 3 U,V open, disjoint such that x € U and y € V. V is
a neighborhood of y, and V' C X — {z}. So y is an interior
point of X — {z}.
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So for an arbitrary y, we have shown y € X — {z} is an
interior point of X — {x}. So, by 5.5 on page 66, X — {z} is
open. So {z} is closed.

So X is Tj.

2.3 Result

Let R have the standard topology.

Claim: R is T5.

Proof. Let a,b € R, a # b. Without loss of generality, as-
sume that a <b. Let U = (a —1,%2), V = (2, 0+ 1). U
and V are open. U and V are disjoint. a € U, b € B. So R
is TQ' ]

2.4 Result
Let X be a Hausdorff space, Y C X.

Claim: Y is Hausdorff.

Proof. Let a,b €Y, a+# b. Since a,b € X, 3 disjoint neigh-
borhoods (open in X) of a and b, U and V. YNU, YNV
are disjoint, non-empty, and neighborhoods of @ and b (open
in Y'). So Y is Hausdorft. O

2.5 Result

Let X, Y be spaces, Y Hausdorff, f : X — Y a continuous,
1-1 function.
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Claim: X is Hausdorf.

Proof. Let x,y € X, x # y. Since f is 1-1, f(x) # f(y). So
we have disjoint open sets U, V such that f(z) € U, f(y) € V.
Since f is continuous, f~1(U) and f~!(V) are open. Since
f(x)yeUand fly)eV,x e f7HU)and y € f~1(V).

Lemma: f~HU)f7H(V) = ¢.

Proof of Lemma: Suppose f~'(U) and f~'(V) are not dis-
joint. Then Fa € fHU)N S V). Soa € f~1(U) and
ae€ f74 (V). So f(a) =b € U and f(a) = c € V. But
f is well-defined, so b = ¢. That’s bad, since it implies
be UNV = ¢. So our assumption that U and V are not
disjoint has led to a contradiction. So U and V are disjoint.

UJ
UJ

2.6 Result

Claim: Hausdorff is a topological property.
Proof. 2.5 (Why?)

2.7 Result

Let (X, T) be a Hausdorff space. Let T” be a topology on X
with T C T".

Claim: (X,T") is Hausdorff.

Proof. Let a,b € X, a # b. Then since (X, T) is Hausdorff,
we have disjoint U,V € T such that a € U, b € V. And
since T’ CT', U,V €T'. So (X,T") is Hausdorff. O

139




140 Topology and the Language of Mathematics

2.8 Result

Let T be the lower limit topology on R.

Claim: (R,T) is Hausdorff.

Proof. Let a,b € R, a # b. Without loss of generality, as-
sume a < b. Let x = 22, Then a € [a,z) and b € [z,b+ 1).
[a,z) and [z,b + 1) are disjoint open sets. So R, with the
lower limit topology, is Hausdorff. O

2.9 Result

Let T" be the K-topology on R.

Claim: (R, T) is Hausdorff.

Proof. This is trivial by 2.11 on page 122, 2.3 on page 138,
and 2.7 on the previous page. Why? O

2.10 Result

Let f,g : X — Y be continuous. Let Y be T;. Let
A={z e X; flx) = g(=)}

Claim: A is closed in X.

Proof. We show that X — Aisopenin X. X — A = {z €
X; f(x) # g(x)}. Let a € X — A. Then f(a) # g(a) and
f(a),g(a) € Y. Since Y is Ty, we have open, disjoint U,V
such that f(a) € U, g(a) € V. So a € f~!(U) which is open
by continuity of f. And a € g~*(V) which is open by con-
tinuity of g. Let W = f~1(U)N g (V). W is open. And
a € W. It would be nice if W C X — A. If that were true,
then we will have found a neighborhood W of a, contained
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in X — A. That would make a an interior point of X — A.
Since a was arbitrary, that would make X — A open. So A
would be closed.

Lemma: W C X — A

Proof of Lemma: We show W [ A = ¢. Suppose x € W () A.
Then since x € W, we have f(x) € U, g(x) € V. But, since
x € A, we have f(z) = g(x). This implies UV # ¢. But
U and V are disjoint. So our assumption that W () A # ¢ is
false. So WA = ¢.

0

O

2.11 Result

Let X be T,. Let Y be a retract of X.

Claim: Y 1is closed in X.

Proof. We show X —Y isopenin X. Let z € X — Y. We
want to show z is an interior point of X — Y.

Since Y is a retract of X, we have continuousr : X — Y
with r(y) =yVy €Y.

r(z) € Y. Since X is Ty, AU, VP C X, with UNV = ¢
and z € U, r(x) € V. Since V" C X, (VN Y)P" CY.
Since r is continuous, r (V' (Y is open in X.

Since r(z) € Vand r(z) € Y, z € (V) and z € r}(Y).
Sox € r/}(VNOY).

So we have z € U and z € (VY.

Sox e UN(r YV Y)), which is open. It would be nice if
UNr~Y(VNY) and Y were disjoint. In that case we would
have shown that x is an interior point of X —Y and we would
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be done.

Lemma: (UNEFY(VAOY)NY =9

Proof of Lemma: Supposenot. Thenz € U,z € "1 (VY
and z € Y. Sor(z) € V and r(z) € Y and x € Y. Since
reY,r(x) =z Butr(zx) € V. Sox € V. So we have
x € UNV = ¢, which is bad. So our assumption that
UN(rH(VNY) and Y are not disjoint has led to a con-
tradiciton. So U ((r~(V(Y) and Y are disjoint. O

By the above comments we are done. O

Chapter 3

15 - Regular Spaces

3.1 Definition

Let X be a space. We say X is T3 (or regular) when X is
T, and the following is true:

r € X, 0 c X and v ¢ C = 3 disjoint open sets U
and V such that x € U, and C C V.

3.2 Result

Let X be T5.

Claim: X is 1.

Proof. Let x,y € X. Since X is T}, we know {z} is closed.
Since X is regular, 3 U,V open, disjoint such that {z} C U

and y € V. And since {z} C U, z € U. So we have shown
X is TQ. ]
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3.3 Example

Let T be the standard topology on R.

Claim: (R, T) is Tj.

Proof. Let a € R, C**d¢ C R, a ¢ C. By 5.6 on page 67,
a is not a limit point of C'. So 3 W a neighborhood of «,
W C R—C'. We have a basis for T, all open intervals in R. So
W is a union of open intervals in R. So, we can find an open
interval in R, (x,y) so that a € (z,y) C W C R — C. Also,
we have a € (%%, %¥), and C' C (—o0, %) [J(%5¥, 00). Let

2 1 2 'y
U= (&2 29V = (—o0, %) [ J(%¥,00). U and V are

T2 072 ) 2
open, disjoint sets. Anda € U, C C V. a

3.4 Result
Claim: T3 is a topological property.

Proof. Let f : X — Y be a homeomorphism. Let X be
Ts. Let Aesed ¢ Y, y €Y — A. Then f-1(A)desed C X.
And f7'(y) € X — f71(A) (Why?). Since X is regular, we
have disjoint open sets U,V C X such that f~!(y) € U and
7Y A) c V. f(U) and f(V) are open and disjoint (Why?).
And y € f(U), A C f(V). SoY is regular. So Ty is a
topological property. O

3.5 Definition

Let X be a space. We say X is T, (or normal) when the
following is true:

A and B closed subsets of X = 3 disjoint open sets U and
V such that AC U, and B C V.
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Chapter 4

Compact Spaces

4.1 Definition

Let X be a space, and let {U,} be a collection of open sets
in X. Then we say {U,} is an open covering of X if
V z € X,z eU, for some U, € {U,}.

4.2 Example

Let’s look at R with the standard topology.
Let U, = (—n, n). Then {U,},en is an open covering of
R.

4.3 Definition

Let X be a space and let {U,} be an open covering of X. A
subcover of {U,} is a collection of some of the elements of
{U,} that forms an open cover of X.
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4.4 Definition

Let X be a space and let {U,} be an open covering of X. A
finite subcover of {U,} is a subcover of {U,} that has a
finite number of elements.

4.5 Definition

Let X be a space. X is said to be compact when the follow-
ing is true: For any open covering {U,} of X, 3{Uy,...,U,}
a finite subcover of {U,}-

4.6 Problem

Let X be a finite topological space. Show X is compact.

4.7 Problem

Show [0,1] C R is compact.

4.8 Problem

Show [0, 1] C R is not homeomorphic to (0,1) C R.

4.9 Result
Let Aclesed  xcompact  Qhow A is compact.

Proof. Let J be a covering of A by sets open in X. Then
JU{X — A} is an open covering of X. So, some finite sub-

collection of J | J{X — A} covers X. This finite subcover will
also cover A. So A is compact. O
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4.10 Problem

Let Acompact — XTo Show A is closed.

4.11 Problem

Equip R with the standard topology. Let a,b € R, a < b.
Show none of the following are compact in R:

(a,b),[a,b), (a,b]

4.12 Problem

Consider [0, 1], (0,1),0, 1), (0, 1] as subspaces of R with the
standard topology.

1) Show [0, 1] is not homeomorphic to (0, 1).

2) Show [0, 1] is not homeomorphic to [0, 1).

3) Show [0, 1] is not homeomorphic to (0, 1]

4.13 Problem

Show R is not compact.
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Chapter 5

Metric Spaces

5.1 Definition

Let f: X x X — R. We say f is a metric on X when the
following are satisfied.

1) f(z,y) >0Vax,yeX.
2) fla,y) =0 <=z =y,
3) flz,y) = fly,z)Va,y € X.

4) f(z,y)+ fly,2) > f(z,2)Vr,y,z € X.

5.2 Definition

Let X be a set with a metric f. Let x € X. We define a
ball about x of radius a, B(z,a) = {y € X; f(z,y) < a},
where a € (0,00) C R.
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5.3 Problem

Let X be a set with a metric d.
Let B = {B(z,a); x € X,a > 0}. Show B is a basis for a
topology 17" on X.

5.4 Definition

Let X be a set with a metric d.

Let B = {B(z,a); * € X,a > 0}. Then B is a basis for a
topology on X called the metric topology on R. When X
is equipped with this topology, we say X is a metric space.

5.5 Result

Let X be a set.

f =
Deﬁned:XxX—>]R,d(x,y)={0 ore=y

1 forz#vy

Claim: d is a metric on X.

Proof:
1) d(z,y) > 0Vr,ye X

2)d(z,y) =0z =y
3) d(z,y) = d(y,x)Vr,y € X

4) Let z,y,z € X.
d(xz,z) =0or d(z,z) = 1.

Case 1: d(z,2) =0
Then d(z, z) < d(z,y) + d(y, 2).
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Case 2: d(z,2) =1

Then = # z. Suppose d(z, z) £ d(z,y) + d(y, 2).

Then d(z,y) + d(y,z) = 0. So d(x,y) = 0, and d(y, z) = 0.
Sox=y,and y = 2. So z = z. But x # 2.

So d(x,z) < d(x,y) + d(y, z). So d is indeed a metric on X.

5.6 Problem

Let d : R x R — R = |y — z|. Show R is a metric space,
with metric d.

5.7 Problem

Let T be the standard topology on R. Let 7" be the topology
induced on R by the metric d in 5.6. Show T = T".

5.8 Result

Let X have metric d.
Claim: X is T;.

Proof. Let © € X. We want to show {x} is closed. We will
show X — {x} is open. Let y € X — {z}. Since y # x, we
have d(z,y) =t > 0. B(y, £) is open. It would be nice if we
had B(y, %) N{z} = ¢. Then we would have a neighborhood
of y contained in Y — {z}. So y would be an interior point
of X — {z}. And X — {z} would be open. And {z} would
be closed.

Lemma: B(y, %) ({z} = ¢
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Proof of Lemma. Suppose not. Then z € B(y, %).
So d(x,y) < L. But d(z,y) =t > L.

By comments above, we are done.

5.9 Result

Let X have metric d.
Claim: X is Ty.

Proof. Let A, B be disjoint closed subsets of X. X — B is
open. Since A C X — B, for each a € AJe, > 0 such that
B(a,e,) € X — B. Since X — A is open and B C X — A,
for each b € B 3¢, > 0 such that B(b,e) C X — A. Let
U=U,eaBla,%) and let V = J,.5 B(b,%). U and V are

2
open, since each B(a,¢€) is open.

It would be nice if A C U, B C V,and UV = ¢. Then
we would be done.

Lemma 1: ACU

Proof of Lemma 1. Let t € A.

Then t € B(t, %) C Uyea Bla,5)=U. Sote U.
Lemma 2: BCV

Proof of Lemma 2. Similar to Lemma 1.

Lemma 3: UNV = ¢.
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Proof of Lemma 3. Suppose not. Then 3z € U[V. So
T € (Upea Bla, %)) N(Upes B(b,2)).  So for some fixed
acAandbec B, x € Bla, %)\ B(b,2) .

d(a,b) < d(a,x) + d(z,b).

But d(a,z) < % and d(z,0) < 2.

Sod(a,b) < @ + @ = leta)

Case 1: ¢, < ¢
Then d(a,b) < 3% = ¢, So a € B(b, ).
But B(b, ¢) C X — A. contradiction.

Case 2: ¢, > ¢,

Then d(a,b) < %L“) =¢€,. S0 b€ B(a,e,).

But B(a, ¢,) € X — B. contradiction.
SoUNV =¢

As discussed above, by the Lemmas we are done.

5.10 Problem

Let X be a metric space with metric d. Let A C X, equip A
with the subspace topology. Show A is also a metric space,
with metric the restriction of d to A.

5.11 Result

Let X be a metric space with metric g and Y a metric space
with metric h.
Let f: X — Y.

Claim: f is continuous <= for any z € X and ¢ > 036 > 0
such that g(z,a) < 6 = h(f(x), f(a)) <eVa € X.
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Proof. = Suppose f is continuous. Let € > 0 and = € X.
B(f(z),€)isopenin Y. Since f is continuous, f~(B(f(z),€)
is open in X. But z € f~Y(B(f(x),¢). So there is a basis
element B(z, ) such that # € B(x,d) C f~H(B(f(x),¢).

Suppose a € X and g(z,a) < §. Then a € B(z,d§) C
FYB(f(x),€). So f(a) € B(f(x),€). So h(f(x), f(a)) < e.

<= Suppose for any z € X and ¢ > 03 > 0 such that
g(xz,a) < 6 = h(f(z), f(a)) < eVa € X. We want to
show f is continuous. Let U?" C Y. We want to show
Y U)Pm € X. Let z € f~4(U). It would be nice if z were
an interior point of f~'(U). Then f~*(U) would be open
and f would be continuous and we would be done.

Lemma: w is an interior point of f~1(U).

Proof of Lemma: f(x) € U (since x € f~1(U)). So Je >
0 such that B(f(x),e) C U. So 36 > 0 such that g(x,a) <
d = h(f(x),f(a)) < eVa € X. That is, f(B(x,9)) C
B(f(x),€). So B(x,6) C f~H(B(f(z),€) C f7'(U). B(x,9)
is open and x € B(x,d). So z is an interior point of f~1(U).
U
U

We are done.

5.12 Remark

We can say more true things about the words we have defined
in the book. We can also define more words, and say true
things about them. That characterizes many math problems
not given in this book.
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normal, 144

onto, 29

open, 43

open covering, 145
open interval, 47

path, 127
path connected, 127
point, 47

[1]
regular, 143
restriction, 85 2]
retract, 95
retraction, 95

3]

separation, 103

set, 17

Sierpinski space, 123
space, 43

standard topology on R, 49
subcover, 145

subset, 18

subspace topology, 114
surjective, 29

Ty, 133

Ty, 137

Ts, 143

Ty, 144

topological property, 91
topological space, 43
topology, 43

union, 20

well-defined function, 27
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